
Computational Robotics Lab Redundant inspection planning

Project description—Redundant inspection planning

Background

In this work we investigate the problem of inspection planning , or coverage planning [2, 7]. Here, we
consider the specific setting where we are given a robot equipped with a sensor and a set of points of
interest (POI) in the environment to be inspected by the sensor. The problem calls for computing a
minimal-length motion plan for the robot that maximizes the number of POI inspected. This problem
has a multitude of diverse applications, including industrial surface inspections in production lines [11],
surveying the ocean floor by autonomous underwater vehicles [3, 8, 9, 12], structural inspection of
bridges using aerial robots [4, 5], and medical applications such as inspecting patient anatomy during
surgical procedures [10].

Specifically, we are interested in improving Incremental Random Inspection-roadmap Search (IRIS) [6],
a new asymptotically-optimal inspection-planning algorithm. IRIS computes inspection plans whose
length and set of inspected points asymptotically converge to those of an optimal inspection plan. IRIS
incrementally densifies a motion-planning roadmap using sampling-based algorithms, and performs
efficient near-optimal graph search over the resulting roadmap as it is generated.

Problem statement

Motivated by recent work on resilient robotic autonomy [1], in this project we consider the problem of
redundant inspection planning . Specifically, given a set of points of interest and some parameter k, we
want to compute a path such that every point of interest is seen from at least k different configurations1

Assume that k is small (say k ≤ 3) and suggest a modification of the search algorithm employed by
IRIS. Once you suggested such an algorithm implement it and test it on the different scenarios provided
in the code base.

Code base

The code to be used is located at https://github.com/UNC-Robotics/IRIS. If you are using Ubuntu
or macOS, then installation is straightforward following the installation instructions. If you are a
Windows user, a detailed installation manual can be found in the appendix to this document.

The code is split into two applications build graph and search graph. The first generates the
(implicitly-defined) RRG while the second runs searches over the corresponding inspection graph. This
is done in order to allow for changes in the search algorithm (e.g., comparing different approximation
parameters) without the need to re-generate the RRG which may be time consuming and will not allow
an apple-to-apple comparison. Thus, the outcome of build graph is three files that contain (i) the set of

1We can think of more realistic requirements where we want to compute a path such that every point of interest is
seen from at least k different configurations that are at least δ apart but this is beyond the scope of the project.

1

https://github.com/UNC-Robotics/IRIS

Computational Robotics Lab Redundant inspection planning

configurations generated (ii) the corresponding vertices together with the set of points viewed from each
vertex and (iii) the set of potential edges (some may be in collision and this is stated in the file). Each
file also contains the time required to generate the data (e.g., collision detection time or time required to
compute the points covered). Then, in search graph these times are accounted for when searching for
a solution. More details can be found in the readme page https://github.com/UNC-Robotics/IRIS.

There are three models that can be used (i) A planar 5-link manipulator inspecting a planar envi-
ronment, (ii) a CRISP robot inspecting a collapsed lung, (iii) a quadrotor inspecting a bridge. More
details can be found in the readme page https://github.com/UNC-Robotics/IRIS.

The code uses several external libraries (e.g., boost, eigen and OMPL). Of specific interest to us
is OMPL—the Open Motion Planning Library which consists of many state-of-the-art sampling-based
motion planning algorithms. In the implementation of IRIS, OMPL is used to represent the different
C-spaces to implement the underlying RRG (taking into account collision detection, nearest-neighbor
search, sampling and more).

References

[1] Kostas Alexis. Towards a science of resilient robotic autonomy, 2020.

[2] Randa Almadhoun, Tarek Taha, Lakmal Seneviratne, Jorge Dias, and Guowei Cai. A survey on
inspecting structures using robotic systems. 13(6), 2016.

[3] Brian Bingham, Brendan Foley, Hanumant Singh, Richard Camilli, Katerina Delaporta, Ryan Eu-
stice, Angelos Mallios, David Mindell, Christopher Roman, and Dimitris Sakellariou. Robotic Tools
for Deep Water Archaeology: Surveying an Ancient Shipwreck with an Autonomous Underwater
Vehicle. J. of Field Robotics, 27(6):702–717, 2010.

[4] Andreas Bircher, Kostas Alexis, Michael Burri, Philipp Oettershagen, Sammy Omari, Thomas
Mantel, and Roland Siegwart. Structural Inspection Path Planning via Iterative Viewpoint Re-
sampling with Application to Aerial Robotics. In IEEE International Conference on Robotics and
Automation (ICRA), pages 6423–6430. IEEE, 2015.

[5] Andreas Bircher, Mina Kamel, Kostas Alexis, Michael Burri, Philipp Oettershagen, Sammy Omari,
Thomas Mantel, and Roland Siegwart. Three-dimensional coverage path planning via viewpoint
resampling and tour optimization for aerial robots. Rob. Res., 40(6):1059–1078, 2016.

[6] Mengyu Fu, Alan Kuntz, Oren Salzman, and Ron Alterovitz. Toward asymptotically-optimal
inspection planning via efficient near-optimal graph search. In Robotics: Science and Systems
(RSS), 2019.

[7] Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics. 61(12):1258–
1276, 2013.

2

https://github.com/UNC-Robotics/IRIS
https://github.com/UNC-Robotics/IRIS
https://journals.sagepub.com/doi/abs/10.1177/1729881416663664
https://journals.sagepub.com/doi/abs/10.1177/1729881416663664
https://onlinelibrary.wiley.com/doi/full/10.1002/rob.20350
https://onlinelibrary.wiley.com/doi/full/10.1002/rob.20350
https://onlinelibrary.wiley.com/doi/full/10.1002/rob.20350
https://ieeexplore.ieee.org/document/7140101
https://ieeexplore.ieee.org/document/7140101
https://link.springer.com/article/10.1007/s10514-015-9517-1
https://link.springer.com/article/10.1007/s10514-015-9517-1
https://www.sciencedirect.com/science/article/pii/S092188901300167X

Computational Robotics Lab Redundant inspection planning

[8] Nuno Gracias, Pere Ridao, Rafael Garcia, Javier Escart́ın, Michel L’Hour, Franca Cibecchini,
Ricard Campos, Marc Carreras, David Ribas, Narćıs Palomeras, et al. Mapping the Moon: Using
a lightweight AUV to survey the site of the 17th Century ship ‘La Lune’. In OCEANS-Bergen,
2013 MTS/IEEE, pages 1–8. IEEE, 2013.

[9] Matthew Johnson-Roberson, Oscar Pizarro, Stefan B. Williams, and Ian Mahon. Generation
and Visualization of Large-Scale Three-Dimensional Reconstructions from Underwater Robotic
Surveys. J. of Field Robotics, 27(1):21–51, 2010.

[10] Alan Kuntz, Chris Bowen, Cenk Baykal, Arthur W. Mahoney, Patrick L. Anderson, Fabien Mal-
donado, Robert J. Webster, and Ron Alterovitz. Kinematic Design Optimization of a Parallel
Surgical Robot to Maximize Anatomical Visibility via Motion Planning. In IEEE International
Conference on Robotics and Automation (ICRA), pages 926–933, 2018.

[11] Roberto Raffaeli, Maura Mengoni, Michele Germani, and Ferruccio Mandorli. Off-line view plan-
ning for the inspection of mechanical parts. International Journal on Interactive Design and
Manufacturing (IJIDeM), 7(1):1–12, 2013.

[12] Maurice A. Tivey, Albert Bradley, Dana Yoerger, Rodney Catanach, Alan Duester, Steve Lib-
eratore, and Hanu Singh. Autonomous Underwater Vehicle Maps Seafloor. Eos, Transactions
American Geophysical Union, 78(22):229–230, 1997.

3

https://ieeexplore.ieee.org/abstract/document/6608142
https://ieeexplore.ieee.org/abstract/document/6608142
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20324
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20324
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20324
https://www.semanticscholar.org/paper/Kinematic-Design-Optimization-of-a-Parallel-Robot-Kuntz-Bowen/d49affecfb04802b2cd5780b2c1e3956fd70a289
https://www.semanticscholar.org/paper/Kinematic-Design-Optimization-of-a-Parallel-Robot-Kuntz-Bowen/d49affecfb04802b2cd5780b2c1e3956fd70a289
https://link.springer.com/article/10.1007/s12008-012-0160-1
https://link.springer.com/article/10.1007/s12008-012-0160-1
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/97EO00151

Computational Robotics Lab Redundant inspection planning

Appendix—installation manual using Windows OS

1. Installing WSL (Windows Subsystem for Linux) If you use Windows as your OS, WSL is
provides an easy way to use Windows IDEs with code built in Linux. Follow instructions described
in the following link https://docs.microsoft.com/en-us/windows/wsl/install-win10. There,
install the Ubuntu 18.04 LTS distribution.

2. Installing relevant software on your Ubuntu distribution. IRIS’s dependencies can be
found in the following link https://github.com/UNC-Robotics/IRIS. Here, we provide step-
by-step instructions on how to install them. Launch your Ubuntu machine. First time takes a few
minutes for updates and installation. You will be prompted to choose a username and password.

(a) Install git by typing the commands:

$ sudo apt-get update

$ sudo apt-get install git-core

Check that this was installed correctly by typing the command

$ git --version

You should get something similar to the following
. git version 2.17.1

(b) Install gcc. General instructions can be found here:
https://linuxize.com/post/how-to-install-gcc-compiler-on-ubuntu-18-04/. How-
ever, you only need to type the following commands

$ sudo apt update

$ sudo apt install build-essential

$ sudo apt-get install manpages-dev

Check that this was installed correctly by typing the command

$ gcc --version

You should get something similar to the following
. gcc (Ubuntu 7.4.0-1ubuntu11̃8.04.1) 7.4.0

(c) Install boost. General instructions can be found here:
https://www.osetc.com/en/how-to-install-boost-on-ubuntu-16-04-18-04-linux.html.
However, you only need to type the following commands

$ sudo apt install libboost-dev

$ sudo apt install libboost-all-dev

Check that this was installed correctly by typing the command

$ dpkg -s libboost-dev — grep ’Version’

4

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/UNC-Robotics/IRIS
https://linuxize.com/post/how-to-install-gcc-compiler-on-ubuntu-18-04/
https://www.osetc.com/en/how-to-install-boost-on-ubuntu-16-04-18-04-linux.html

Computational Robotics Lab Redundant inspection planning

You should get something similar to the following
. Version: 1.65.1.0ubuntu1

(d) Install cmake. General instructions can be found here:
https://vitux.com/how-to-install-cmake-on-ubuntu-18-04/. However, you only need
to type the following commands

$ sudo apt-get install cmake

Check that this was installed correctly by typing the command

$ cmake --version

You should get something similar to the following
. cmake version 3.10.2

(e) Install Eigen3. To instal Eigen3, type the following command

$ sudo apt-get install libeigen3-dev

(f) Install OMPL. General instructions can be found here:
https://ompl.kavrakilab.org/installation.html. However, you can follow these direc-
tions:

Download instalation file from https://ompl.kavrakilab.org/installation.html and
place it in c:/tmp (create folder first). Now, go back to your Ubuntu machine and type the
following commands (this may take some time):

$ mkdrir Project

$ cd Project

$ mv /mnt/c/tmp/install-ompl-ubuntu.sh ./

$ chmod u+x install-ompl-ubuntu.sh

$./install-ompl-ubuntu.sh --python

$ cd ompl-1.4.2-Source/

$ cd build

$ cmake ..

$ make

3. Install IRIS. We first want to install the code (after going back to the Project directory):

$ cd ../../

$ git clone https://github.com/UNC-Robotics/IRIS.git

$ cd IRIS

$ git submodule update --init --recursive

5

https://vitux.com/how-to-install-cmake-on-ubuntu-18-04/
https://ompl.kavrakilab.org/installation.html
https://ompl.kavrakilab.org/installation.html

Computational Robotics Lab Redundant inspection planning

Now we download the data used by the algorithm. From your Windows machine, download the
data from this link - https://drive.google.com/file/d/19DGtog4D4hAgwFu1bV_ct0h_n-G4BR1Z/
view and locate is at c:/tmp.

In your Ubuntu machine, type the commands

$ mkdir data

$ cd data

$ mv /mnt/c/tmp/data.tar .

$ tar -xvf data.tar

$ cd ..

We are now ready to build the code

$ mkdir build

$ cd build

We now need to run cmake. Unfortunately, some times your computer cannot find the ompl files
we installed so we need to tell it where ompl is installed. Ideally, the following lines should work

$ cmake ..

$ make

If you get an error, then this should work.

$ cmake -DOMPL INCLUDE DIRS=/usr/local/include/ -DOMPL LIBRARIES=/usr/local/lib/libompl.so
..

$ make

Here “/usr/local/include/” may be replaced by specific path in your computer, but probably
this is the path. Similarly, “/usr/local/lib/libompl.so” may be replaced by specific path in your
computer, but probably this is the path.

6

https://drive.google.com/file/d/19DGtog4D4hAgwFu1bV_ct0h_n-G4BR1Z/view
https://drive.google.com/file/d/19DGtog4D4hAgwFu1bV_ct0h_n-G4BR1Z/view

Computational Robotics Lab Redundant inspection planning

You can now run the code directly from your Ubuntu distro (make sure you are in the build
directory).

For example, to build a graph type

$./app/build graph seed num vertex file to write

To search the graph type

$./app/search graph file to read initial p initial eps tightening rate method file to write

4. Using the code through Visual Studio Code

(a) On your Windows machine, download and install Visual Studio Code from this link https:

//code.visualstudio.com/download.

(b) Open VS Code and it will offer you to install WSL extension

(c) Push the marked button

7

https://code.visualstudio.com/download
https://code.visualstudio.com/download

Computational Robotics Lab Redundant inspection planning

(d) Now visual Studio code will offer you to remote Ubuntu from VSCODE through WSL.

(e) Install extensions for C++

(f) You may want to consider the “Pretty” and “Bracket pair colorizer” packages. They are
very helpful for writing code in Visual studio code.

(g) Now you can open new terminal of ubuntu throughout VSCode

8

Computational Robotics Lab Redundant inspection planning

(h) From the Terminal Open IRIS’s folder.

(i) If you want to run in debug mode with breakpoint you have to install gdb and compile in
debug mode by the following command:

$ sudo apt install gdb

$ mkdir debug

$ cd debug

$ cmake -DCMAKE BUILD TYPE=Debug ..

$ make

(j) The last step is to press F5 and choose gdb compiler, and create the relevant launch.json

file. Lines that should be changed have black background. Remember to change update file
to use your username. Here is the file relevant for build graph

”version”: ”0.2.0”,

”configurations” : [

{
”name” : ”(gdb) launch”,

”type” : ”cppdbg”,

”request” : ”launch”,

”program” : ”$workspaceFolder/debug/app/build graph” ,

”args” : [”(1)” , ”(2)” , ”control file1”],

”stopAtEntry” : ”false”,

”cwd” : ”/home/username/Project/IRIS/debug” ,

”environment” :[]

”externalConsole” : ”false”,

”MIMode” : ”gdb”,

”setupCommands” :[

9

Computational Robotics Lab Redundant inspection planning

{
”description” : ”Enable pretty-printing for gdb”,

”text” : ”-enable-pretty-printing”,

”ignoreFailures” : ”false”

}
]

},
]

}

10

Computational Robotics Lab Redundant inspection planning

Here is the file for search graph:

”version”: ”0.2.0”,

”configurations” : [

{
”name” : ”(gdb) launch”,

”type” : ”cppdbg”,

”request” : ”launch”,

”program” : ”$workspaceFolder/debug/app/search graph” ,

”args” : [”control file” , ”0.8” , ”0.8” , ”0” , ”0” , ”control file”],

”stopAtEntry” : ”false”,

”cwd” : ”/home/username/Project/IRIS/debug” ,

”environment” :[]

”externalConsole” : ”false”,

”MIMode” : ”gdb”,

”setupCommands” :[

{
”description” : ”Enable pretty-printing for gdb”,

”text” : ”-enable-pretty-printing”,

”ignoreFailures” : ”false”

}
]

},
]

}

11

