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Project description—Time-Efficient Curvature Constrained Planning
in the Presence of Obstacles

1 Introduction

In this project, we are interested in computing curvature constrained paths for a robot moving amidst
obstacles in the plane. Namely, we have a robot that has a minimum turning radius that it can follow.
This constraint allows to model a wide range of systems such as UAVs and steerable needles and has
attracted increasing attention in the planning community [1, 5, 6, 7]. Arguably, the best-known model
for such systems is the Dubins model [2, 4]. Here, the robot is assumed to be a planar system that can
only move forward with a constant velocity and a minimum turning radius. The state of the system
is defined by its position (the location of a predefined reference point on the robot) and orientation
(the heading of the robot). In the absence of obstacles, the minimal-length path can be computed
analytically [2]. Unfortunately, when the environment contains obstacles, the problem is known to be
NP-hard [8].

Here, we are interested in a slightly-more complicated cost function—minimizing travel time (and
not path length). In many settings, taking longer manoeuvres at a higher speed is favourable (with
respect to travel time) when compared to short, but slow, manoeuvres. When there are no obstacles
in the environment, several approaches exist for computing time-optimal or time-efficient manoeuvres.
Wolek et al. [11] developed a list of possible cases that are solved by non-linear optimization to compute
time-efficient manoeuvres. However, the solver needs proper initialization and thus cannot guarantee
that the optimum is found.

An alternative approach was recently presented by Kučerová et al [3] who proposed a heuristic
approach that utilizes a Dubins path [2, 4] with two turn segments and a central straight segment,
for which both turning radii are optimized to get the fastest trajectory possible. The travel time of
the trajectory is computed based on a speed profile that takes into account both speed and forward
acceleration limits. Their approach exploits computationally efficient closed-form solutions for Dubins
path [2] which can be determined in microseconds [10]. For a visualization, see Fig. 1. Unfortunately,
their approach only considers the setting where the start and target of a path are sufficiently far apart.
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1 INTRODUCTION
In this paper, we study the problem of trajectory planning for %xed-
wing aircraft, where the goal is to %nd time-e&cient trajectories
while the motion constraints of the vehicle are ful%lled. Most of
the %xed-wing vehicles are limited by the minimum turning radius,
and therefore, a model called Dubins vehicle (or Dubins car) [5, 9]
is often used. The model represents a non-holonomic vehicle with
a constant forward speed and a %xed minimum turning radius. The
shortest path connecting two points with the prescribed leaving
and arrival angles of Dubins vehicle (two con%gurations) can be
computed e&ciently by a closed-form expression [2].
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Figure 1: Example of generated Dubins trajectories for vari-
ous combinations of the initial and !nal turning radii (blue).
The fastest trajectory is in green, and the shortest one in red.

Various extensions of Dubins vehicle have been proposed in the
literature. Reeds and Shepp [14] considered a bi-directional vehicle.
Furthermore, the three-dimensional extension called the Dubins
Airplane model [4] can be utilized if altitude changes are required.
Time-optimal Dubins paths under steady wind %eld are studied
in [1, 10, 15] and for the unsteady %eld in [11], while unknown
wind disturbances are studied in [20].

We propose to extend Dubins vehicle model to utilize longer
turning radii than the minimum radius because it enables us to gen-
erate faster trajectories; see example in Fig. 1. The concept of mul-
tiple radii have been already utilized for %nding time-optimal [19],
energy-optimal trajectories [16], and safe emergency landing tra-
jectories [17]. However, the herein proposed approach respects
the limited value of the forward acceleration, in contrast to the
time-optimal trajectories [19] that contain discontinuities in the
speed. The proposed heuristic approach utilizes Dubins path with
two turn segments and the central straight segment, for which both
turning radii are optimized to get the fastest trajectory possible.
The travel time of the trajectory is computed based on speed pro!le
that takes into account both speed and forward acceleration lim-
its. Although an alternative approach can be based on parametric
curves, such as Bézier curves [6], the presented approach exploits
computationally e&cient closed-form solution of Dubins path [5],
which can be determined in microseconds [18].

The text is structured as follows. The time-optimal planning prob-
lem is introduced in the following section. The proposed method
using multiple radii is described in Section 3, and computational
results are presented in Section 4. The %nal remarks are in Section 5.

2 PROBLEM STATEMENT
The problem studied in this paper is to %nd the fastest (time-optimal)
trajectory for a %xed-wing aircraft between two con%gurations. The
aircraft is modeled as an extended version of Dubins vehicle [5] for
which the speed is not constant and may be changed to shorten
the travel time. The state of the vehicle q is represented by the
con%guration (x ,y,θ ) ∈ SE (2), where both positions (x ,y) ∈ R2
and heading angle θ ∈ S1 are given. The dynamics of the vehicle

Figure 1: Example of generated Dubins trajectories for various combinations of the initial and final
turning radii (blue). The fastest trajectory is in green, and the shortest one in red. Figure adapted
from [3].
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When the environment contains obstacles, one can discretize the environment and use search-based
algorithms such as A* [9]. This builds upon the underlying assumption that an optimal path can be
constructed by multiple locally-optimal short paths. However, this contradicts the assumption taken
by Kučerová et al. that the paths are sufficiently far apart. For a visualization, see Fig. 2.
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(a) Dubins paths. Total time cost using vmax: 35.99s.
Total time cost using vmin: 55.95s

(b) Time-optimal path (for k = 0). Total time cost: 34.51s

Figure 6: The Dubins paths vs. time-optimal path in an obstacle-rich environment

Table II: Total costs and computation times using adaptive state pruning

Risk
Weight

State Pruning
Threshold

Total Cost
J(P⋆)

Computation
Time

Saving in Com-
putation Time

k = 0

None 33.31 259.92s −
η = π 34.51 73.31s 71.80%

η = π/2 34.51 54.29s 79.11%
η = π/4 34.51 38.06s 85.36%

k = 0.3

None 38.46 709.56s −
η = π 38.87 227.90s 67.88%

η = π/2 38.87 169.97s 76.05%
η = π/4 39.52 124.78s 82.41%

k = 3

None 62.98 569.43s −
η = π 62.98 157.95s 72.26%

η = π/2 62.98 116.08s 79.61%
η = π/4 71.94 96.56s 83.04%

longer path with a total time cost of 35.99s. On the other hand,
the Dubins path with vmin has better controllability with the
turning radius r; thus, it produces the minimum-length path
through the shortcut. However, it takes 55.95s which is much
higher due to the minimum speed.

In comparison, the time-optimal path shown in Fig. 6b is
composed of segments with different speeds. This enables the
vehicle to travel at vmax in relatively open regions to reduce
the total time cost, while subject to a larger turning radius R.
In congested regions, it tends to decrease its speed to vmin to
gain better maneuverability with a smaller turning radius r.
The total time cost of the time-optimal path is 34.51s, which
is lower than both the Dubins paths described above.

B. Time-optimal Risk-aware Paths for Different k

This section examines the effect of k in (10) on the motion
planning. A higher k is expected to produce a safer path,
however, the time cost would be potentially higher.

Fig. 7a to Fig. 7c show the time-optimal risk-aware paths
for k = 0, 0.3 and 3, respectively. These paths are color-
coded based on the speed information. Fig. 7d to Fig. 7f show
the same paths but they are color-coded based on the risk
information. The risk of a state along the path was evaluated
using (9), where the sample states were generated using the
sampling interval of ∆d = 0.4m.

It is seen that, for k = 0, the time-optimal path reaches
the goal in 34.51s through the shortcut in congested regions.
However, it has multiple dangerous segments as shown in
Fig. 7d by the risk color-coding. The max risk of the whole
path was 2.45. For k = 0.3, the time-optimal risk-aware path
selects a less-risky route to avoid the congested region, but
requires a higher time cost of 36.30s. Accordingly, the number
of risky segments was significantly reduced; however, the
segments in cells (9,9) and (9,11) still present high risk.
Further, for k = 3, the resulting path picked the safest route,
where the max risk reduced to 1.48, but the corresponding
time cost reaches 41.89s.

In addition, a smoothing operation can help remove zigzag-
shaped segments, e.g., near cell (8,7) in Fig. 7a; and further
reduce J(P⋆). Here, we re-optimize over randomly sampled
state pairs along the optimal path and replace with lower-
cost collision-free segments if they exist. This operation was
repeated for four iterations, and the smoothed paths and their
risk color-codings are shown in Fig. 7a∼ 7f, respectively.
C. Complexity Reduction by Adaptive State Pruning

This section examines the efficiency of the adaptive state
pruning technique in reducing the computational complexity.
Table II summarizes the total cost J(P⋆), the average compu-
tation time over 5 runs, and the savings in computation time
as compared to no pruning, for varying η . The results are
presented for three values of k = 0, 0.3 and 3. The results are
generated on a computer with 3.4GHz CPU and 16GB RAM.

Note that a higher threshold of η would retain more
diagonally facing states during the heading-based pruning.
The results in Table II show that the adaptive state pruning
technique can significantly reduce the computation time. When
η is reduced from π to π/4, the computational cost reduces;
however, the total optimization cost remains more or less the
same, thus revealing the effectiveness of the pruning approach.

5. CONCLUSIONS

This paper presents an algorithm for time-optimal risk-
aware motion planning for curvature-constrained variable-
speed vehicles. The results show superiority in time savings
over the Dubins paths. The algorithm allows users to generate

Figure 2: The Dubins paths vs. time-optimal path in an obstacle-rich environment. Left: Dubins paths
using minimal (red) and maximal speed (green) of cost 55.95sec and 35.99sec, respectively. Right:
Time-optimal path of cost 34.51. Figure adapted from [9].

2 Problem definition

In this project we will explore how the approach of Kučerová et al. can be used as a post-processing
step to improve the quality of paths computed using a search-based algorithm.

We are given a curvature-constrained point robot operating in a planar environment amidst a set
of polygonal obstacles (an exact description of the robot’s motion model can be found in [3]). We are
given start and target configurations qs, qt such that qs = (xs, ys, θs) where (xs, ys) and θs describe the
robot’s position and orientation, respectively (similarly for qt).

Given an environment cluttered with obstacles, we start by running an A*-like algorithm to compute
a candidate path connecting qs and qt. The A*-like algorithm will use as motion primitives Dubins
paths1. Let π = (q1, . . . , qn) be such a path where each qi is a robot configuration and the Dubins path
between any pair of consecutive configurations qi and qi+1 is collision free.

We can take any pair of configurations qi and qj such that i < j and qi and qj are sufficiently far
apart, and use the approach of Kučerová et al. to compute the high-quality path π∗i,j connecting them.
This path may collide with the obstacles thus it needs to be validated. If it is valid, we replace the
subpath connecting qi and qj in π with π∗i,j . If π∗i,j is invalid, we discard it and repeat the process.

1ADVANCED: An alternative approach would be to take time-optimal paths with no limits on the robot’s acceleration.
In contrast to using Dubins paths which give us an upper bound on the quality of a solution, this will provide a lower
bound on the quality of a solution. What are the implications of using this approach?
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3 Project description

The project will start with an implementation of the A*-like algorithm to compute a candidate path
connecting qs and qt. For details on such a search algorithm (with more complicated local connections)
see [9].2 The second step would be to implement the approach of Kučerová et al. to compute the
high-quality path connecting two configurations.

Once these two building blocks are implemented, we need a post-processing strategy: How do we
choose which pairs of configurations to take? For how many iterations should we run this approach?
How many radii should we use in Kučerová algorithm (there is an inherent trade-off there between
speed of computation and quality of the result). Implement several post-processing strategies and run
a series of benchmarks to evaluate the quality of the approach.

BONUS: How would the project change if we take the alternative approach mentioned in foot-
note (1)? Implement it and report on the results.
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