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Project description—Time-Efficient Curvature Constrained Planning
in the Presence of Obstacles

1 Introduction

In this project, we are interested in computing curvature constrained paths for a robot moving amidst
obstacles in the plane. Namely, we have a robot that has a minimum turning radius that it can follow.
This constraint allows to model a wide range of systems such as UAVs and steerable needles and has
attracted increasing attention in the planning community [I, 5 [6l [7]. Arguably, the best-known model
for such systems is the Dubins model [2,14]. Here, the robot is assumed to be a planar system that can
only move forward with a constant velocity and a minimum turning radius. The state of the system
is defined by its position (the location of a predefined reference point on the robot) and orientation
(the heading of the robot). In the absence of obstacles, the minimal-length path can be computed
analytically [2]. Unfortunately, when the environment contains obstacles, the problem is known to be
NP-hard [§].

Here, we are interested in a slightly-more complicated cost function—minimizing travel time (and
not path length). In many settings, taking longer manoeuvres at a higher speed is favourable (with
respect to travel time) when compared to short, but slow, manoeuvres. When there are no obstacles
in the environment, several approaches exist for computing time-optimal or time-efficient manoeuvres.
Wolek et al. [I1] developed a list of possible cases that are solved by non-linear optimization to compute
time-efficient manoeuvres. However, the solver needs proper initialization and thus cannot guarantee
that the optimum is found.

An alternative approach was recently presented by Kucerova et al [3] who proposed a heuristic
approach that utilizes a Dubins path [2| 4] with two turn segments and a central straight segment,
for which both turning radii are optimized to get the fastest trajectory possible. The travel time of
the trajectory is computed based on a speed profile that takes into account both speed and forward
acceleration limits. Their approach exploits computationally efficient closed-form solutions for Dubins
path [2] which can be determined in microseconds [10]. For a visualization, see Fig. |1l Unfortunately,
their approach only considers the setting where the start and target of a path are sufficiently far apart.

Figure 1: Example of generated Dubins trajectories for various combinations of the initial and final
turning radii (blue). The fastest trajectory is in green, and the shortest one in red. Figure adapted
from [3].
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When the environment contains obstacles, one can discretize the environment and use search-based
algorithms such as A* [9]. This builds upon the underlying assumption that an optimal path can be
constructed by multiple locally-optimal short paths. However, this contradicts the assumption taken
by Kucerova et al. that the paths are sufficiently far apart. For a visualization, see Fig.
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Figure 2: The Dubins paths vs. time-optimal path in an obstacle-rich environment. Left: Dubins paths
using minimal (red) and maximal speed (green) of cost 55.95sec and 35.99sec, respectively. Right:
Time-optimal path of cost 34.51. Figure adapted from [9].

2 Problem definition

In this project we will explore how the approach of Kucerova et al. can be used as a post-processing
step to improve the quality of paths computed using a search-based algorithm.

We are given a curvature-constrained point robot operating in a planar environment amidst a set
of polygonal obstacles (an exact description of the robot’s motion model can be found in [3]). We are
given start and target configurations gs, ¢ such that gs = (zs,ys, 0s) where (zs,ys) and 05 describe the
robot’s position and orientation, respectively (similarly for ¢).

Given an environment cluttered with obstacles, we start by running an A*-like algorithm to compute
a candidate path connecting gs and ¢;. The A*-like algorithm will use as motion primitives Dubins
pathsﬂ Let m = (q1,...,qn) be such a path where each ¢; is a robot configuration and the Dubins path
between any pair of consecutive configurations ¢; and g;+1 is collision free.

We can take any pair of configurations ¢; and g; such that i < j and ¢; and ¢; are sufficiently far
apart, and use the approach of Kucerova et al. to compute the high-quality path W; ; connecting them.
This path may collide with the obstacles thus it needs to be validated. If it is valid, we replace the
subpath connecting ¢; and ¢; in © with 7r;", j If ﬂ; ; 1s invalid, we discard it and repeat the process.

' ADVANCED: An alternative approach would be to take time-optimal paths with no limits on the robot’s acceleration.
In contrast to using Dubins paths which give us an upper bound on the quality of a solution, this will provide a lower
bound on the quality of a solution. What are the implications of using this approach?
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3 Project description

The project will start with an implementation of the A*-like algorithm to compute a candidate path
connecting gs and ¢;. For details on such a search algorithm (with more complicated local connections)
see [9]E| The second step would be to implement the approach of Kucerova et al. to compute the
high-quality path connecting two configurations.

Once these two building blocks are implemented, we need a post-processing strategy: How do we
choose which pairs of configurations to take? For how many iterations should we run this approach?
How many radii should we use in Kucerové algorithm (there is an inherent trade-off there between
speed of computation and quality of the result). Implement several post-processing strategies and run
a series of benchmarks to evaluate the quality of the approach.

BONUS: How would the project change if we take the alternative approach mentioned in foot-
note (1)? Implement it and report on the results.
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