
Toward Understanding the
Hardness of Multi-Agent Path

Finding

Ofir Gordon

Toward Understanding the
Hardness of Multi-Agent Path

Finding

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Ofir Gordon

Submitted to the Senate
of the Technion — Israel Institute of Technology

Tishrei 5782 Haifa October 2021

This research was carried out under the supervision of Dr. Oren Salzman, in the Faculty
of Computer Science.

Some results in this thesis have been published as an article by the author and research
collaborators in a conference (SoCS 2021) during the course of the author’s masters
research period, the most up-to-date version of which being:

Gordon, O., Filmus, Y., and Salzman, O. (2021). Revisiting the complexity analysis of
conflict-based search: New computational techniques and improved bounds. In Proceedings
of the Fourteenth International Symposium on Combinatorial Search, SOCS 2021, Virtual
Conference [Jinan, China], July 26-30, 2021, pages 64–72. AAAI Press.

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Oren Salzman, for being an
incredible supervisor and mentor, for inspiring me along the course of my studies and
for helping and guiding me with endless patience and passion for the research world.

Additionally, I would like to thank Prof. Yuval Filmus from the faculty of computer
science for his helpful insights and guidance that contributed a lot to my work.

I would also like to thank my friends from the Computational Robotics Lab in
the computer science faculty for the helpful discussions and collaborations, and to my
beloved wife which stands with me in every step I take.

Lastly, I would like to devote this work to my parents—everything I achieve is
thanks to them.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3

2 Preliminaries 9
2.1 MAPF Formulation . 9
2.2 The CBS Algorithm and its Complexity Analysis 10
2.3 Multi-valued Decision Diagrams (MDD) 12
2.4 Generating Functions Approach for Bounding a Recurrence Relation . . 13

3 Complexity Analysis of CBS using an MDD Size Bound 15
3.1 Bounding the Number of Constraints using MDD Size 15
3.2 General Upper Bound on the Size of an MDD 17
3.3 MDD Size Analysis Based on the Graph’s Radius 20

4 Complexity Analysis of CBS using a Recurrence Relation 23
4.1 Recurrence Relation which Bounds CBS’s Worst-Case Complexity . . . 23
4.2 Induction-Based Bound . 25
4.3 Generating Functions-Based Bound . 27
4.4 Empirical Evaluation of Bounds . 29

5 Conclusions and Future Work 33
5.1 Conclusions . 33
5.2 Discussion and Future Work . 34

A Generating Functions-Based Analysis for Asymptotic Approximation
of Recurrences 39

Hebrew Abstract i

List of Figures

2.1 An illustration of a MAPF instance on a grid with five agents. The
agents a1, ..., a5 are represented as colored circles and originate in their
start location. The matching goal for each agent is marked with a square
of the same color. The colored grid areas represent blocked vertices in
the environment. The colored arrows represent an optimal solution. . . 9

2.2 A MAPF scenario example with two agents. 10
2.3 CBS’s high-level search illustration, for the scenario in Figure 2.2. 10
2.4 Examples of MDD graphs for agent a1 from the scenario presented in

Figure 2.2, for path lengths 3 and 4. t is the layer index in the MDD. . . 12

3.1 An empirically difficult scenario for CBS, where it is possible to increase
the size of the graph without changing the difficulty. 16

3.2 Illustration of vertices reachable for an agent with start and goal at si

and gi located at the same vertex, within distance of 1–3 time-steps,
on a 4-connected grid. Note that the t’th MDD layer includes all the
vertices in the matching surrounding dashed line. 18

3.3 The radius ρ =
√

n − 1 on a grid graph with no obstacles. 20
3.4 An illustration of an MDD graph for the case where C = 2ρ + δn. The

first and last ρ layers are bounded according to Equation 3.1, while the δ

middle layers can reach the size of the entire graph in the worst-case. . . 20

4.1 An illustration of the recursion presented in Equation 4.1. 24
4.2 The log2 of the bounds as a function of the graph size for different ratios

between the graph’s size (n) and the instance properties (s = kC). The
two new bounds (REC+IND, REC+GF) are significantly lower than
the original bound. Notice that the approximation obtained from the
generating functions analysis (REC+GF) indeed tightly bounds the re-
currence T (ns, s). 32

Abstract

The problem of Multi-Agent Path Finding (MAPF) calls for finding a set of conflict-
free paths for a fleet of agents operating in a given environment. This problem has
attracted high interest among the artificial-intelligence and robotics community in the
recent years. There exist different real-world application which can be modeled and
developed based on the theory behind the MAPF problem.

Even though planning an optimal path for a single agent can be done efficiently,
solving the MAPF problem optimally is computationally intractable in the general case.
Nevertheless, there are several algorithmic approaches for solving the MAPF problem
optimally that are able to solve non-trivial problem instances effectively.

Arguably, the state-of-the-art approach to computing optimal solutions is Conflict-
Based Search (CBS). Although this approach and its many improvements allow to solve
non-trivial instances of the problem in practice, CBS sometime fails to solve MAPF
instances even when allowed long periods of run-time. Interestingly, such instances do
no exhibit notable differences from easy ones. That is, there is still a significant lack of
understanding in the community regarding the causes for the hardness of the problem
and the ability of different solvers to cope with it.

In this work we address this issue, and try to shed light on the main aspects that
affect the problem’s hardness. We do so by revisiting the complexity analysis of CBS
to provide tighter bounds on the algorithm’s run-time in the worst-case. Our analysis
paves the way to better pinpoint the parameters that govern (in the worst case) the
algorithm’s computational complexity.

Our analysis is based on two complementary approaches: In the first approach
we bound the run-time using the size of a Multi-valued Decision Diagram (MDD)—a
layered graph which compactly contains all possible single-agent paths between two
given vertices for a specific path length. In the second approach we express the run-
time by a novel recurrence relation which bounds the algorithm’s complexity. We use
a generating functions-based analysis in order to tightly bound the recurrence.

This analysis provides new upper-bounds on CBS’s complexity. The results allow us
to improve the existing bound on the run-time of CBS for many cases. For example, on
a set of common benchmarks we improve the upper-bound by a factor of at least 2106 .
We also provide an extended discussion, which hopefully will allow to extend this line
of research, toward improving our understanding of the MAPF problem’s hardness.

1

2

Chapter 1

Introduction

The Multi-Agent Path Finding problem (MAPF) is a well-studied problem, which at-
tracts high interest among the robotics and AI community. It can be used to model
many real-life applications, from automated warehouses (Wurman et al., 2008), through
computer games (Sturtevant, 2012) and to autonomous vehicles (Pallottino et al., 2007).
Therefore, much effort is invested in order to solve the problem as efficiently as possible,
under different models and for different scenarios.

In the general version of MAPF (Stern et al., 2019) we are given a graph G = (V, E)
with n vertices and a set of k agents A = {a1, a2, ..., ak}. Each agent ai is provided with
a start and a goal location, (si, gi) s.t. si, gi ∈ V . Time is discretized and at every time-
step an agent can either wait in its current location or move across an edge to an
adjacent vertex. A feasible solution is a paths set P = {p1, p2, ..., pk} such that pi is a
path for agent ai from si to gi, and there is no conflict between any two paths in P.
We consider two types of conflicts—a vertex-conflict, in which two agents occupy the
same vertex at the same time-step, and an edge-conflict, in which two agents traverse
the same edge from opposite sides at the same time-step. An optimal solution is a
paths set P which also optimizes some objective function. Arguably, the most common
objective functions used for MAPF are:

1. Makespan—where we want to minimize the time in which the last agent arrive at
its goal.

2. Sum-of-Costs (SoC)—where we want to minimize the combined time it took for
all agents to arrive at their goals.

The task of finding an optimal solution is known to be NP-hard (Yu, 2016) for
both aforementioned objectives. The problem remains NP-hard even when G is a sub-
graph of a planar grid graph (Banfi et al., 2017). Nevertheless, state-of-the-art optimal
algorithms are able to effectively solve many non-trivial instances.

The approaches for solving the MAPF problem can be divided into two algorithmic
families:

3

1. Search-based algorithms—in which the algorithm searches through the space
of possible solutions in order to find an optimal solution.

2. Compilation-based algorithms—in which the MAPF instance is being trans-
lated into an instance of a different problem, and is solved using a known solver
for the different problem.

In our work we focus on search-based algorithms and mainly discuss Conflict-Based
Search (which we present shortly). Nevertheless, compilation-based algorithms, and
mainly the SAT-based approach, constitute a large and important portion of recent
work on the MAPF problem. In addition, we later argue that our work can also be
adapted to exploit ideas from compilation-based algorithms. Therefore, we address
both algorithmic techniques in this introduction and explain the main ideas of SAT-
based solvers for MAPF as well. State-of-the-art algorithms from both disciplines have
achieved impressive results dealing with non-trivial MAPF instances. There is no clear
evidence for one algorithm or technique that stands above all others, and which algo-
rithm is better usually depends on the structure of the instance (Kaduri et al., 2021).

Search-Based Algorithms for MAPF

Solving the MAPF problem with a simple A* approach is usually ineffective. Such an
algorithm would require to search in the joint space resulting in a graph whose size
and branching factor are exponential in the number of agents. Therefore, other search-
based approaches were suggested, in which the main idea is to start from a possibly
infeasible solution and work iteratively to make it feasible. Arguably, the two main
algorithms under this category are Increasing-Cost Tree Search (ICTS) (Sharon et al.,
2013) and Conflict-Based Search (CBS) (Sharon et al., 2015).

Increasing-cost tree search. ICTS first finds a shortest path for each agent inde-
pendently and constructs a solution with a given cost (induced by the found paths).
It then systematically increases the cost of the solution and searches through the so-
lutions space for each cost, until it finds a feasible solution. The search in each level
(for any given cost) is not done exhaustively, but rather with dedicated techniques that
make the search more efficient. Such techniques include fast pruning mechanism that
allow to quickly eliminate irrelevant solutions. The search for possible solutions in each
layer is done using dedicated data structures that capture a large portion of all possible
solutions, to allow fast identification of feasible solutions.

Conflict-based search. CBS, which is one of the most commonly used algorithms
for solving MAPF problems optimally, starts the same way as ICTS and constructs
a solution by finding a shortest path for each agent. It then works in two levels to
construct a feasible solution—in the high-level search it systematically identifies and

4

resolves conflicts in the solution until obtaining a feasible solution. After CBS finds
a conflict it applies a constraint that prohibits a conflicted agent from being in the
location of the conflict at that certain time-step. It then works in the low-level search
to plan a new path for the newly constrained agents. We give a detailed explanation
of CBS in Section 2.2.

A recent work combines CBS and ICTS, taking “the best of both worlds”, in order
to construct an improved algorithm which is less limited on instances that are difficult
for each of the algorithms separately (Walker et al., 2021).

CBS improvements. CBS was found to be highly effective in coping with different
types of MAPF scenarios, thus, many studies followed this approach and introduced
different techniques that allow to empirically improve the algorithm’s run-time. One of
the earliest, most significant improvement for the algorithm is the prioritize conflicts
technique which uses conflict classification (Boyarski et al., 2015). Identifying and
prioritizing conflicts that have to be solved in order to find an optimal solution (called
cardinal conflicts) can be done efficiently. Prioritizing conflicts decreases the run-time
of CBS significantly.

Other improvements based on the technique of conflicts classification also exist.
Developing dedicated heuristics for the algorithm’s high-level search is a natural mod-
ification. The main heuristics which exist for CBS are based on finding and counting
cardinal and other types of conflicts (Felner et al., 2018; Li et al., 2019a; Boyarski et al.,
2021). Mutex-propagation (Zhang et al., 2020) is another improvement which considers
conflict classification and is used to try and approximate the reachable states in the
search-space efficiently, without the necessity of solving all conflicts explicitly.

Another recent work introduced the idea of CBS with disjoint splitting (Li et al.,
2019b). In this version of the algorithm, splitting the high-level search due to a conflict
is done by applying two constraints on the same agent—one that prohibits it from being
at the location of the conflict and one that required it to be there. By doing that, the
algorithm maintains its optimally guarantee while reducing the size of the search-space
much faster on average. A detailed description of the disjoint splitting method is given
in Section 2.2.

A popular line of research tries to identify different symmetries in the structure of
the problem, and use techniques of symmetry-breaking in order to speed-up CBS’s exe-
cution. Such techniques include triangle-reasoning (Li et al., 2019c), corridor-reasoning
and target-reasoning (Li et al., 2020a). These ideas were shown empirically to signifi-
cantly reduce the run-time of CBS on a variety of cases with different properties.

One last CBS-based approach is Iterative-Deepening Conflict-Based Search (IDCBS)
(Boyarski et al., 2020), which uses the idea of an IDA*-like search in the high-level search
of CBS. It allows to utilize different aspects of the search, such as similarities between
consecutive expanded nodes, in order to speed-up computation time for many instances.

Since the problem of finding an optimal solution is computationally hard for the

5

general case, many works tried to developed bounded-suboptimal algorithms, that trade
off solution quality with efficiency of computation. Enhanced-CBS (ECBS) is one such
algorithm which is based on CBS (Barer et al., 2014; Li et al., 2020b). Other leading
approaches include different compilation-based solvers (Cohen et al., 2016; Surynek
et al., 2017a). Non-bounded algorithms also exists, such as Priority-Based Search
(PBS) (Ma et al., 2019) which solves conflicts by prioritizing one agent’s path before
the other.

Compilation-Based Algorithms for MAPF

Compilation-based (or reduction-based) solvers call for reducing an instance of a prob-
lem, usually in polynomial time, into an instance of a different familiar problem, for
which there exist known, effective, solvers. The challenge in this technique is often
keeping the reduced instance small enough, so the solver could work on it in an ef-
ficient time. Optimization problems like MAPF raise another challenge—translating
the necessity of optimizing a cost function to an instance of a decision problem is
not trivial, and might require extending the algorithm (i.e., not just to work with an
existing solver).

There exist several studies on compilation-based algorithms for the MAPF problem,
most of them based on a reduction to the boolean satisfiability problem (or SAT). SAT
is one of the most studied problems in computer science. It calls for deciding whether
a given boolean formula, over a set of variables, can be satisfied. SAT is known to
be NP-complete (Cook, 1971). Nevertheless, many studies developed techniques, often
called “SAT-solvers”, for coping with the SAT problem, allowing to solve many different
instances in a very effective way (Kilani et al., 2013).

Reducing an NP-hard problem to SAT is a common approach for dealing with NP-
hard problems. The main idea of this concept is reducing an instance of the original
problem into a boolean satisfiability problem instance, i.e., a boolean formula, using
some polynomial-time construction, and then using any SAT-solver in order to find if
the formula can be satisfied.

In order to exploit the abilities of SAT-solvers for the purpose of solving a MAPF
instance, previous works show how to translate the set of all possible arrangements of
agents throughout an interval of a given cost into a boolean formula. The formula rep-
resents the question “whether a solution exists within this given cost?”. The algorithm
then works iteratively, going over increasing costs, until the solver returns a positive
answer. This guarantees an optimal solution.

The first studies on the topic handled MAPF under the makespan objective (Surynek,
2012, 2014). More recent work has shown how to exploit dependencies between a so-
lution’s makesapn and sum-of-costs, in order to handle MAPF under the sum-of-costs
objective as well (Surynek et al., 2016). Recent works extended this idea to create
improved SAT-based MAPF solver (Surynek et al., 2017b). Other works use the SAT-

6

based approach to solve different formulations of the MAPF problem (Surynek, 2021;
Barták et al., 2021).

Motivation and Contribution

The different aforementioned approaches for solving the MAPF problem allow to cope
with a variety of complicated instances effectively. Nonetheless, each one of those al-
gorithms has limitations, and there are many cases where CBS and other approaches
cannot solve the problem even when allowed very long running times (Kaduri et al.,
2020). Interestingly, many such empirically-hard instances do not exhibit notable dif-
ferences from easy ones, and identifying the exact source of (theoretical and empirical)
hardness is an open question (Salzman and Stern, 2020).

In this work we try to address this gap in the understanding of the hardness of
the problem. In the long term, we hope that this work would be a starting point for
identifying and classifying measurable factors that affect the hardness of the MAPF
problem and the ability of the different algorithms to solve them effectively. Such
results have the potential to significantly improve our ability to handle the problem.
Such improvements can include adjustment of algorithms to an instance specification
(e.g., by choosing a certain heuristic), better designing the environment in a way that
would facilitate with the algorithm (this approach is highly motivated by the warehouses
management domain), develop an algorithm selection mechanism, etc.

Our Contribution

As explained, we hope that this work would lay the ground for more extended research
on the aspects that affect the hardness of the MAPF problem. As a first step, in
this work we study the computational complexity of CBS, which is one of the most
commonly-used algorithm for solving the MAPF problem. We provide a modified
analysis for the algorithm’s worst-case complexity, while presenting new observations
and tools that can be used to further improve the understanding on the problem’s
difficulty. The original exposition of CBS (Sharon et al., 2015) presented a (loose)
upper-bound on the algorithm’s complexity that is exponential both in the problem’s
parameters (number of agents k and number of vertices n in the graph G) and in the
cost of an optimal solution. In this work we tighten this upper bound and provide a
new point of view on the analysis of a worst-case scenario for the algorithm. We believe
that this is a first step toward improving our understanding of the problem’s hardness
which, in turn, will allow to design algorithms that can solve a wider range of instances.

We suggest two novel approaches to improve the algorithm’s worst-case complexity
analysis. In the first approach we improve the (existing) upper-bound on the number
of possible constraints that CBS might need to apply in order to find a solution. We
do this by bounding the size of a Multi-valued Decision Diagram (MDD)—a layered

7

graph which compactly contains all possible paths between two vertices for a specific
path length (Sharon et al., 2013). In the second approach we express the run-time of an
advanced variant of CBS using a novel recurrence relation which bounds the algorithm’s
complexity. We compute the generating function (Wilf, 2006) of the recurrence and
use it to tightly bound its value in order to obtain a tighter bound on the complexity
of the CBS variant.

Combining the results from both approaches provides us with new tighter upper-
bounds for the worst-case complexity of CBS. Beyond the new bounds, we anticipate
that the computational tools we introduce will allow to obtain future improvements
to the upper-bound. For example, this can be obtained via tighter bounds on the
recurrence relation, or by improving the analysis of an MDD size.

In addition to the main results on CBS’s bounds, we give an extended discussion
that can be a starting point for future work. We discuss several other directions for
further improving the algorithm’s analysis in particular, and trying to utilize our results
for practical purposes.

8

Chapter 2

Preliminaries

2.1 MAPF Formulation

a1

a2

a3

a4

a5

Figure 2.1: An illustration of a MAPF instance on a grid with five agents. The
agents a1, ..., a5 are represented as colored circles and originate in their start loca-
tion. The matching goal for each agent is marked with a square of the same color. The
colored grid areas represent blocked vertices in the environment. The colored arrows
represent an optimal solution.

We assume the standard setting of the MAPF problem, where we are given a
graph G with n vertices and a set of k agents with start location si and goal loca-
tion gi for each agent ai. The task is to plan a path for each agent, such that the total
paths set, denoted by P, is feasible, i.e., paths do not collide with each other. We say
that P is an optimal solution if it optimizes some predefined objective function.

Given a solution P, denote by T (p) the time that a single agent’s path p ∈ P termi-
nates (note that wait moves are counted as a time-step in a path p). Now, set C to be

9

the latest time that a single-agent’s path p ∈ P terminates. Namely, C = maxi {T (pi)}.
Under the Makespan objective, C constitutes the cost of the optimal solution P.

Thus, for the rest of this work we will consider C as the cost of an optimal solution of
the problem, to be used in the complexity analysis and discussions. Notice that kC con-
stitutes an upper bound on the cost of an optimal solution for the Sum-of-Costs (SoC)
objective, where the cost is determined by the total sum of T (pi) for each 1 ≤ i ≤ k.

In most parts of this work we mainly focus on the makespan objective, since it
provides a tight bound on the time of the total execution, which is important when
analyzing the time complexity of an algorithm. We further discuss the applicability of
our results and techniques for the sum-of-costs objective in Section 5.2.

Figure 2.1 presents an example of a MAPF scenario with five agents on a partially
blocked 2D-grid graph, and an optimal solution to this scenario under the sum-of-costs
objective.

2.2 The CBS Algorithm and its Complexity Analysis

a1

a2

A C

E

F

B D G

Figure 2.2: A MAPF scenario example
with two agents.

Figure 2.3: CBS’s high-level search illus-
tration, for the scenario in Figure 2.2.

Conflict-Based Search (CBS) (Sharon et al., 2015) is a two-level search algorithm
which works as follows—first it finds an optimal path for each agent independently
using some single-agent search algorithm like space-time A* (Hart et al., 1968; Silver,
2005). CBS then works to resolve conflicts that occur in the solution: in the high-level
search it preforms a best-first search upon a constructed conflicts-tree (CT). Each node
in the CT consists of a solution, the solution’s cost and a set of constraints imposed
on the agents. A constraint is either a vertex-constraint of the form ⟨a, v, t⟩, which
prohibits agent a from being at vertex v at time-step t, or an edge-constraint of the
form ⟨a, u, v, t⟩, which prohibits agent a from crossing the edge (u, v) at time-step t.
We refer to such constraints as negative constraints.

In each iteration, CBS selects an unexpanded CT node with lowest cost. It then
finds a conflict that occurs between two agents in the node’s solution. It splits the
CT node into two child-nodes, each with a constraint on one of the agents that were

10

involved in the conflict. It then runs the low-level search to construct a new solution
in each child node, that does not violate the new constraint, by running a single-agent
search algorithm like A*.

Figure 2.3 presents an illustration of the CT that CBS builds for the scenario pre-
sented in Figure 2.2. The original solutions (in the root node) have a vertex-conflict at
vertex E at time-step 2. CBS splits the root and create two child nodes—one (left) with
a constraint on agent a1 and one (right) with a constraint on agent a2. The solutions
in each child node are feasible (no conflicts) and optimal with cost 4.

The basic version that we have just presented was recently improved using positive
constraints (Li et al., 2019b). In a positive constraint ⟨a, v, t⟩, agent a is required to be
at vertex v at time-step t. When using positive constraint with CBS, a CT node is split
into two child nodes using a positive and a negative constraint, forcing and forbidding
the conflicted agent to be at a vertex or edge at a certain time-step, respectively.

CBS’s Complexity Analysis

An analysis of the worst-case time-complexity of CBS was originally presented by Sharon
et al. (2015). They show that CBS’s complexity can be decomposed to bounding the
size of the CT and the complexity of the single-agent search in each low-level iteration.
We refer to the size of the CT in a worst-case scenario as the high-level search complex-
ity. The low-level search complexity corresponds to running A* for a single agent. In
the main part of this work we focus on analyzing the high-level search complexity. An
overall upper bound on CBS’s complexity can obtained by simply multiplying any of
the following results with the complexity of a single agent’s A*-search.

The original analysis uses the following assumption for a worst-case scenario for the
algorithm:

Assumption 2.2.1. In a worst-case scenario for CBS, each agent is constrained to avoid
every vertex except one at every time-step in an optimal solution. 1

Assumption 2.2.1 implies that each agent can potentially be in every vertex at every
time-step, which can cause conflicts that CBS would need to resolve in order to find
a solution. This bounds the number of (negative) constraints that CBS might need
to apply by O(nkC). At each CT node, exactly one constraint is added. The result
deduced from the above is summarized in the following observation:

Observation 2.2.2. The number of possible constraints that CBS might need to apply
bounds the depth of the CT. Therefore, O(2knC) is a bound on the maximal size of the
algorithm’s CT, and O(nC · 2knC) is an overall bound on CBS’s running time (where

1The original paper contains a minor error in the calculation of the upper bound. The bound
presented here is the new bound whose validity was verified with one of the authors. Similarly, the
oversight regarding not accounting for edge constraints (explained shortly) was also discussed and
verified with one of the authors in the original CBS paper.

11

the nC factor corresponds to the complexity of each low-level search iteration, in the
worst-case). We refer to this analysis and bounds as the original analysis and original
upper bounds, respectively.

It is important to note that the original analysis does not account for the possibil-
ity that CBS would apply edge-constraints (in order to resolve conflicts). It is possible
that in a worst-case scenario the algorithm would require not only to prevent any agent
from occupying any vertex in the graph at each time-step, but also from crossing each
edge of the graph, in order to find the optimal solution. Therefore, accounting for edge
constraints should further increase the theoretical upper bound. For clarity of exposi-
tion, we present our tools for analysing CBS’s complexity with the same assumption,
i.e., that only vertex-constraints are considered. Nevertheless, we address this issue in
detail in our discussion (Section 5.2) and show how to incorporate edge-constraints in
the complexity analysis.

2.3 Multi-valued Decision Diagrams (MDD)

A C

t = 0 t = 1 t = 2 t = 3

E F

(a) MDD3
1

A

C

t = 0 t = 1 t = 2 t = 3

A

E

C

F

t = 4

F

E

(b) MDD4
1

Figure 2.4: Examples of MDD graphs for agent a1 from the scenario presented in
Figure 2.2, for path lengths 3 and 4. t is the layer index in the MDD.

The multi-valued decision diagram MDDC
i is a layered graph that consists of C

layers, which compactly contains all possible paths of agent ai of cost at most C from si

to gi (Sharon et al., 2013). A vertex v ∈ V appears at the t’th layer of MDDC
i if it is

reachable from si and gi in t and C − t steps, respectively. Finally, the size M of an
MDD represents the total number of MDD nodes, and the size Mt of the t’th layer is
the number of MDD nodes in that layer.

It is also possible to construct the cross-product of the MDDs for a set of agents. The
cross-MDD contains in each layer the set of cross-products of vertices which appear at
the layer in each agent’s individual MDD. The cross-MDD is a very useful data structure
which encapsulates a lot of information about the dependencies between agents. For
instance, by searching through a cross-MDD of two agents, it is easy to detect conflicts

12

between the agents, which can be used for the high-level search of CBS or for path
pruning in different algorithms, such as ICTS (Sharon et al., 2013).

MDD graphs are commonly used for different purposes in MAPF algorithms, since
they can be constructed efficiently for a given cost, and their compact representation
contains information that can help improve the identification and classification of con-
flicts (Li et al., 2019a; Zhang et al., 2020). In this work we use MDDs to bound the
number of possible constraints that might need to be applied on a single agent during
a CBS execution.

2.4 Generating Functions Approach for Bounding a Re-
currence Relation

Generating functions are a well-known mathematical tool which, among other things,
can be used to bound recurrence relations. Formally, a generating function of a se-
quence a0, a1, a2, . . ., with the general element denoted by ar, is the function

F (x) =
∑
r≥0

arxr,

i.e., the sequence elements are the coefficients of the series expansion of F (x). This
notion can be extended to sequences (or recurrence relations) with multiple variables.
For instance, given a recursion T (r, s) which defines a sequence, a possible generating
function for it will be of the form

F (x, y) =
∑

r,s≥0
T (r, s) xrys.

For further details on generating functions see, e.g., the book by Wilf (2006).
Given a generating function for a specific sequence, there are many methods that

allow to utilize the function in order to bound the value of the sequence at a certain
index. These different methods depend on the sequence and the obtained function and
there is no guarantee that a certain method could always be applied for this purpose.

The work of Pemantle and Wilson (2008) provides one approach for dealing with
recursions of multiple variables which we briefly describe (additional details are pre-
sented mainly in Section 3 of the aforementioned paper) as it will be a key technique
used to obtain our complexity bounds. Assume that we are given a recursion T (r, s)
and a matching generating function for it F (x, y) =

∑
r,s≥0 T (r, s) xrys that can be

expressed in the following form:

F (x, y) = G (x, y)
H (x, y)

,

where G and H are polynomials.

13

Denote by Hz the partial derivative of H with respect to z (where z can be a
sequence of x and y). The first step calls for finding critical points, which are given by
the solutions in the positive quadrant (i.e., x, y ≥ 0) of the following system:

H = 0

sxHx = ryHy.
(2.1)

Denote the critical points by q1, q2, . . . , qm. Each point qi = (xi, yi) contributes a certain
factor to the approximation of T (r, s), and this contribution can be calculated according
to the point’s multiplicity. The exact way each point contributes to the bound is
detailed by Pemantle and Wilson (2008) and in Appendix. A.

Assume that the contribution of qi is given by Ti (r, s) for each 1 ≤ i ≤ m, then the
analysis suggests that the asymptotic growth of T (r, s) can be tightly approximated
by one of the factors which is given by the critical point’s contribution.

14

Chapter 3

Complexity Analysis for CBS using an
MDD Size Bound

3.1 Bounding the Number of Constraints using MDD Size

The original analysis of CBS’s complexity, explained in Section 2.2, follows Assump-
tion 2.2.1, which unnecessarily assumes that each agent can be at any vertex at any
time-step. Therefore, the algorithm might need to apply a constraint on the agent at
any vertex at any time-step. In practice, we observe that for the most part of an exe-
cution, an agent can only be located in a small local area of the graph. In this section
we follow this observation and perform a refined analysis of the number of possible
constraints that CBS may apply on a single agent. 1 We do that by bounding the size
an agent’s MDD graph.

We suggest a new approach to bound the number of possible constraints that CBS
may apply, using the following observation:

Observation 3.1.1. Given an agent ai and an optimal solution cost C, the maximal
number of negative constraints that CBS may apply on ai is bounded by the size
of MDDC

i .

Observation 3.1.1 holds as CBS may only apply a constraint on agent ai at vertex v

for time-step t if ai can reach v from si within t time-steps and still reach gi in C − t

time-steps, which is the exact definition of an MDD node.
By combining Observation 3.1.1 with Observation 2.2.2 regarding the connection

between the number of constraints and the upper bound of CBS, we obtain the following
corollary:

1 Recall that, as explained in Section 2.2, the original analysis did not account for edge constraints
as a possible means that can be used by the algorithm. We temporarily limit our analysis to account
for vertex constraints only, and defer handling edge constraints to Section 5.2.

15

s1 s2

g1

g2

Figure 3.1: An empirically difficult scenario for CBS, where it is possible to increase
the size of the graph without changing the difficulty.

Corollary 3.1. Let M denote the maximal size of an agent’s MDD in a given instance.
The size of CBS’s conflict-tree is bounded by O(2kM) for any execution of the algorithm
on this instance. This implies a similar bound on the algorithm’s high-level search
complexity.

Corollary 3.1 can be used to recover the original analysis of CBS—a (loose) bound
on M can be obtained by bounding the size of any MDD layer by n. Thus, M = nC,
which gives us the original bound of O(2knC). In general, Corollary. 3.1 allows us to
improve the bound on CBS as long as we can tighten the bound on M. In addition,
we want to emphasize that expressing the bound using the size of the graph n may be
problematic, since this size of the graph does not necessarily indicate that an instance
is more difficult (or simpler). Moreover, it is easy to construct empirically complicated
scenarios for CBS in which it is possible to add vertices to the graph without affecting
the difficulty of the problem.

Figure 3.1 demonstrates such scenario. In the scenario depicted in the figure, an
optimal solution is composed of the two agents crossing along the narrow corridor,
switching order at the bottom row and entering back to reach their destinations. Find-
ing this solution is difficult for CBS (even if the corridor were much shorter). In this
case, it is straightforward to show that adding vertices at the left, right or bottom of
the grid (that is, increasing the size of the graph) would not change the difficulty of
the instance whatsoever (making it neither harder nor easier to solve).

For the simplicity of the exposition, we restrict the discussion in this chapter to
MAPF instances on 4-connected grids (Banfi et al., 2017; Stern et al., 2019). That is,
we consider the setting where an agent can move in four directions from any vertex

16

in the graph. Nonetheless, we emphasize that the technique we use to bound CBS’s
complexity can be used to bound the size of an MDD for any environment.

We assume that G is a complete grid with no blocked vertices. We also give the
following observation:

Observation 3.1.2. The maximal MDD size is obtained for the case where the agent’s
start and goal locations are located at the same vertex, i.e., si = gi.

It is not hard to see that when the start and the goal locations are not at the same
vertex (namely, si ̸= gi), then getting them closer to each other can only increase the
number of vertices that hold the necessary conditions to be included in the t’th layer
of the agent’s MDD (distance at most t from si and at most C − t from gi).

We follow Observation 3.1.2 in our analysis, that is, we assume that in the worst-
case, si and gi are located at the same vertex. Observe that this case serves as an upper
bound on the size of MDDC

i for any other instance. In our discussion we address the
more general case, in which the start and goal locations have some distance between
them, and suggest how to express the bound on the number of constraints using that
distance.

Here, we present two approaches for calculating the bound on M:

1. General refined bound on MDD size—the first analysis approach removes
the number of environment vertices from the complexity analysis, eliminating the
possibility to deem a problem computationally hard just by adding inconsequen-
tial vertices to the environment.

2. MDD size based on graph radius—the second approach accounts for the
structure of G. In addition to the obtained bound, it demonstrates a complexity
analysis restricted to a specific setting (the graph’s radius which will be defined
shortly). This allows to (potentially) obtain tighter bounds on the size of an MDD
which, in turn, provides tighter bounds on CBS’s complexity for a given setting
of interest.

3.2 General Upper Bound on the Size of an MDD

To avoid accounting for the environment’s boundary, we assume in this section that
the graph is an infinite 4-connected grid, in addition to the assumptions that were
mentioned in the previous section. For any optimal path, an agent ai can’t be located
at any vertex within distance larger than C/2 from its start si or goal gi. This implies
a symmetry on the structure of MDDC

i —the last ⌊C/2⌋ layers form a mirror-image of
the first ⌊C/2⌋ layers. The number of vertices on a grid which are reachable from si

within exactly t steps is 4t (see Figure 3.2). At time-step t, ai can be located at any
vertex within distance at most t from si. Therefore, we sum the number of reachable

17

si/gi

t = 1

t = 2

t = 3

Figure 3.2: Illustration of vertices reachable for an agent with start and goal at si and gi

located at the same vertex, within distance of 1–3 time-steps, on a 4-connected grid.
Note that the t’th MDD layer includes all the vertices in the matching surrounding
dashed line.

vertices in the range from 1 to t (excluding si). For any t ≤ C/2 the size of the t’th
layer in MDDC

i is:

Mt ≤
t∑

i=1
4i = 2t(t + 1). (3.1)

Given the aforementioned symmetry:

M ≤ 2 ·
C/2∑
t=1

2t(t + 1) = C3 + 6C2 + 8C

6
= O(C3). (3.2)

We assume for simplicity that C is even, if C is odd then the size of the middle layer
(O(C2) according to Equation 3.1) needs to be added to the result of Equation 3.2.

By placing the result from Equation 3.2 in Corollary 3.1, we obtain that:

Lemma 3.2.1. The high-level search complexity of CBS on grid graphs is bounded
by O

(
2kC3

)
.2

The bound in Lemma 3.2.1 provides a tighter estimate for the algorithm’s complexity
for any instance where: C3 < n · C ⇒ C <

√
n. In addition, this result removes n from

the bound expression. As was explained earlier, eliminating the size of the graph from
2Note that in general it does not hold that 2O(m) = O(2m). The reason for which it does hold in

this case is since the hidden constant in the Big-O notation in Equation 3.2 is smaller than 1.

18

the result gives a bound which can often reflect the behavior of the algorithm in a
worst-case scenario more accurately.

19

3.3 MDD Size Analysis Based on the Graph’s Radius

√
n = 7

√
n
=

7

ρ = 6

ρ = 6

Figure 3.3: The ra-
dius ρ =

√
n − 1 on a grid

graph with no obstacles.

s
i

g
i

t = 1

t = 2

t = ρ

Mt ≤ n Mt ≤ n Mt ≤ n

Figure 3.4: An illustration of an MDD graph for the case
where C = 2ρ + δn. The first and last ρ layers are bounded
according to Equation 3.1, while the δ middle layers can
reach the size of the entire graph in the worst-case.

Definition 3.3.1. The distance dist (u, v) between two vertices u, v in a graph is the
number of edges on a shortest path between them.

Definition 3.3.2. The radius of a graph is ρ = min
u∈V

max
v∈V

{dist (u, v)}. A vertex u for
which it holds that ∀v ∈ V : dist(u, v) ≤ ρ is called a center vertex.

In this section we express the bound on M using the graph’s radius, which gives us
an explicit value for the borders of the grid. Thus, in this case we don’t need to assume
an infinite grid.

We assume that G is a complete square grid with n vertices (i.e., a
√

n ×
√

n grid).
We have that ρ =

√
n − 1 (see an example in Figure 3.3), with the center in the ⌈

√
n

2 ⌉’th
row and column for an odd value of

√
n. When

√
n is even, there is no single center

vertex. For simplicity, we assume that
√

n is odd. An illustration for the structure of
the obtained MDD in the worst-case for this setting is depicted in Figure 3.4.

Observation 3.3.3. A layer of size n exists in MDDC
i only if C ≥ 2ρ (note that a

layer’s size can’t exceed n).

Observation 3.3.3 allows us to characterize settings for which it is possible to refine
our analysis from Section 3.2. For the first and last ρ layers of MDDC

i we bound a layer’s
size using Equation 3.1. Using Observation 3.3.3, the remaining layers are the only
layers with size n. This gives us the following bound for M, for cases where C = 2ρ + δ

for some δ ∈ N:

M ≤ δn + 2 ·
ρ∑

t=1
2t(t + 1)

= 4
3

· ρ(ρ + 1)(ρ + 2) + δn = O(ρ3 + δn).
(3.3)

20

The expression 4
3 · ρ(ρ + 1)(ρ + 2) is smaller than 2 · ρ3 for any ρ ≥ 7. By placing

the result from Equation 3.3 in Corollary 3.1, we obtain that:

Lemma 3.3.4. The high-level search complexity of CBS on grid graphs with radius ρ ≥ 7,
where C = 2ρ + δ for some δ ∈ N, is bounded by O

(
2k·(2ρ3+δn)

)
.

Lemma 3.3.4 not only allows to express the bound in terms of a new (and ar-
guably, more relevant) parameter (namely, the radius of a graph), it also provides a
slightly tighter bound on the overall complexity for complete grid graphs, as long as
the radius is not too small. The new bound is tighter than the original bound for
cases where: k · (2ρ3 + δn) < kn · (2ρ + δ) =⇒ ρ <

√
n (which, indeed holds for com-

plete grids). The hidden constant in the Big-O notation in both the new and the
original bounds is small and does not affect the asymptotic comparison between them.

21

22

Chapter 4

Complexity Analysis for CBS using a
Recurrence Relation

4.1 Recurrence Relation which Bounds CBS’s Worst-Case
Complexity

The structure of CBS’s conflict-tree is inherently recursive. Naturally, the size of the
maximal tree rooted at a certain CT node is composed of the maximal size of each of
the child nodes’ sub-trees. In addition, using a recursion to bound the size of the CT
allows us to slightly address dependencies between different agents, i.e., a case where
a constraint applied by CBS on one agent also eliminates possible future constraints of
other agents. The original complexity analysis ignores such cases completely.

To this end, we introduce a novel recurrence relation which bounds the high-level
search complexity of CBS. More precisely, it bounds the maximal number of CT nodes
that might be generated during the high-level search. We provide an upper bound on
this recurrence relation that allows to improve the original bound on the run-time of
CBS for many cases.

Our improved bound incorporates the fact that recent CBS variants use positive
constraints (Section 2.2), which were recently introduced by Li et al. (2019b). This is in
contrast to the original analysis that only considers negative constraints. However, the
method in which the recursion is defined is not tied to positive constraints. We choose to
incorporate this improvement into the analysis since, unlike other improvements (such
as conflicts-classification and different heuristics), it is independent of the structure
of the specific instance, and its application in CBS is relatively simple and robust.
Nonetheless, we believe that tighter bounds may be obtained in the future by defining
a similar recursion for improvements of CBS, such as CBS with symmetry-breaking (Li
et al., 2019c, 2020a).

Given a MAPF instance with k agents on a graph of size n where the optimal cost
of a solution is C, our goal is to bound the maximal number of CT nodes that might be
generated by CBS after applying a given number of positive and negative constraints.

23

Figure 4.1: An illustration of the recursion presented in Equation 4.1.

CBS will terminate if:

1. All possible negative constraints were applied (this assumption is similar to the
one used for the original bound).

2. The algorithm applied C positive constraints on each of the k agents.

Note that any (positive or negative) constraint applied to a CT node cannot be
applied to any of its children in the CT. In addition, if agents ai and aj were found to
be in a conflict at vertex v at time-step t, applying a positive constraint on agent ai

implies that the negative constraints ⟨ai, v, t⟩ and ⟨aj , v, t⟩ cannot appear in the sub-tree
of the CT node.

From the above we get the following recurrence relation:

Lemma 4.1.1. Let r and s denote the maximal number of negative and positive con-
straints that CBS may apply before it is bound to terminate, respectively. Then, the
high-level complexity of CBS is bounded by:

T (r, s) ≤

1, r = 0 or s = 0

3, r = 1 and s > 0

T (r − 1, s)+

T (r − 2, s − 1) + 1, else.

(4.1)

For r = 0 or s = 0 we get that one of the aforementioned conditions for termination
holds, therefore, the respected node is a leaf node in the CT. For r = 1 there is still a
single negative constraint left to apply, so the node can be split only one more time,
creating two additional leaves (and the node itself is also counted). For any other
inner-node, the algorithm would split it according to a conflict by applying a negative
constraint on one branch, and a positive constraint for the other branch (see illustration
in Figure 4.1). Note that when applying a negative constraint (i.e., reducing r by one)
it does not imply that a positive constraint has been applied (therefore, in the first
component of the recurrence step s does not change).

24

We present two techniques for upper bounding the recursion presented in Equa-
tion 4.1, which in turn provide an upper bound on CBS’s complexity:

1. Induction-based analysis—a common approach for solving a recurrence is to
“guess” a solution (in an educated way) and prove by induction that it holds. This
approach often requires additional relaxed assumptions which eventually give a
loose result.

2. Generating functions-based analysis—a generating function is a common
technique for analyzing recurrence relations. We explain the notion of generating
functions and present a tight empirical upper bound for the recursion, that is
obtained using the recursion generating function.

In both approaches we first bound the general form of the recurrence, i.e., we find
a bound which holds for any given r and s. Recall that in our setting we have a
loose upper bound on the maximal number of negative constraints, i.e., r = knC. The
number of total positive constraints that can be applied is bounded by the cost of an
optimal solution for each of the agents, i.e., s = kC. Therefore, we want to bound the
value of T (knC, kC). Notice that according to Corollary 3.1, in the general case we can
replace the factor of nC in the value of r with a tighter bound on M, if such a bound
exists (for example, we can place r = kC3 for grid graphs, according to the result in
Equation 3.2).

We also give the following key observation, which later allows us to refine our
analysis:

Observation 4.1.2. For any MAPF instance, there is a linear dependency between r,
the maximal number of negative constraints and s, the maximal number of positive
constraints that CBS can apply. Specifically, r = n · (kC) = n · s.

This key observation allows us to search for a bound only for the recursion nodes of
the form T (n · s, s). We use that in our second analysis approach in order to obtain a
tighter bound, which empirically holds for the relevant cases.

4.2 Induction-Based Bound

A common technique for bounding recurrence relations is by expanding the equation
until reaching a boundary case and then deducing a closed-form equation. In our
recursion, this approach is more complicated, because of the recursive step and the
dependence on multiple variables. However, it does allow us to conjecture a possible
bound that we can then prove by induction (the technique of “guessing” a bound and
then proving it by induction is also a common technique for solving recursions). Note
that one problem with this approach is that we do not know if the conjectured bound
is tight. Nevertheless, the obtained general bound allows us to significantly reduce the
bound on CBS.

25

Claim 4.2.1. For any (r, s) s.t. r ≥ 1 and s ≥ 1 it holds that:

T (r, s) ≤ 3 · rs. (4.2)

Which implies that T (r, s) = O(rs).

Proof. The proof is done by induction over pairs (r, s), assuming an order where (r1, s1) ≥ (r2, s2)
if r1 ≥ r2 and s1 ≥ s2 (there exists such an order on pairs where r, s ∈ N).
Base:

T (1, s) ≤ 3 ≤ 3 · 1s.

T (r, 1) ≤ T (r − 1, 1) + T (r − 2, 0) + 1

≤ T (r − 2, 1) + T (r − 3, 0) + 1 + T (r − 2, 0) + 1

≤ . . .︸︷︷︸
r−1 times

≤ T (1, 1)︸ ︷︷ ︸
3

+
r−1∑
i=1

(T (r − i − 1, 0)︸ ︷︷ ︸
1

+ 1)

≤ 3 + 2(r − 1) = 2r + 1 ≤ 3 · r1.

Step: We assume that the claim holds for all pairs smaller than (r, s) and prove it
for (r, s):

T (r, s) ≤ T (r − 1, s) + T (r − 2, s − 1) + 1

≤
i.h.

3(r − 1)s + 3(r − 2)s−1 + 1

≤
∗

3(r − 1)s + 3(r − 1)s−1

= 3[(r − 1)s−1 · (r − 1) + (r − 1)s−1]

= 3(r − 1)s−1 · (r − 1 + 1)

= 3r · (r − 1)s−1 ≤ 3r · rs−1 = 3rs.

Where ∗ holds because 3(r − 1)s−1 ≥ 3(r − 2)s−1 + 1 for r > 1 and s > 1. ■

Recall that negative and positive constraints are bounded by r = kM and s = kC,
respectively (where M is the size of an MDD graph of a single agent). Placing those
values in Equation 4.2 gives the following result:

T (kM, kC) ≤ O
(
(kM)kC

)
. (4.3)

From Equation 4.3 we obtain the following lemma:

Lemma 4.2.2. Let M be an upper bound on the size of an agent’s MDD graph in
the worst-case. Then, the time-complexity of the high-level search of CBS is bounded
by O

(
(kM)kC

)
.

By taking M = nC (i.e., the bound on an MDD size considered in the original
analysis), we get an upper bound of O

(
(knC)kC

)
, in contrast to the original bound

26

of O(2nkC). Here again, the hidden constants in the Big-O notation in both bounds
are small, thus, we omit them in the upcoming comparison between the bounds (Sec-
tion 4.4). The transition of n from the exponent to the basis of the expression, allows
to significantly reduce the bound for most standard MAPF scenarios. In most scenar-
ios the graph is large compared to the other parameters, and also does not necessarily
contribute to the difficulty of the scenario (as explained in Section 3.1).

We can also apply the results we obtained in Sections 3.2 and 3.3 to obtain ad-
ditional bounds expressed with different parameters of the problem, which are also
tighter for different settings. By substituting the bound M = O(C3) from Lemma 3.2
in Lemma 4.2.2 we get a bound of O(kC)3kC . For the case where the solution’s
optimal cost is expressed using the graph radius, i.e., C = 2ρ + δn, we can substi-
tute M = O(ρ3 + δn) (Equation 3.3) and get a bound of O(k · ρ3 + δn)k·(2ρ+δn) on
CBS’s high-level complexity.

4.3 Generating Functions-Based Bound

In our second approach, we present an alternative technique to bound the recur-
sion (Equation 4.1) using generating functions. This, in turn, will allow us to obtain a
tighter bound on CBS’s complexity. A detailed description of the mathematical tools
that are used throughout the analysis is given in Appendix. A.

We start by introducing the generating function for T (r, s). We then continue to
follow the steps outlined by Pemantle and Wilson (2008) to obtain a bound on T (r, s).
We stress that the suggested analysis method is not applicable for formally proving the
bound’s correctness, but we can use it to deduce an asymptotic upper bound which we
then support empirically for a variety of different values.

The method by Pemantle and Wilson (2008), as described in Section 2.4, calls
for finding the contribution factor for the bound obtained by each critical point of the
solution for Equation 2.1. The contribution made by each critical point is an asymptotic
estimation for the value of the recurrence. The resulted estimation is the sum of all
contributions, but, since we only care about an asymptotic bound, only one of the
factors governs the others, in terms of the asymptotic estimation of the recurrence.

We first find the contribution of each critical point. We then apply Observa-
tion 4.1.2, which allows us to deduce a suggested upper bound for CBS. By apply-
ing Observation 4.1.2, we get that one of the contribution factors obtained from the
analysis gives a tight upper bound on T (ns, s).

As explained, we start with presenting the generating function for this recursion,
which is:

F (x, y) = 1 − x + 2xy − x2y

(1 − x)(1 − y)(1 − x − x2y)
. (4.4)

27

We denote F = G/H, where

G(x, y) = 1 − x + 2xy − x2y,

H(x, y) = (1 − x)(1 − y)(1 − x − x2y),

and solve Equation 2.1 to find the critical points. In this setting there are three such
points:

q1 := (x1, y1) =
(

−1 +
√

5
2

, 1
)

,

q2 := (x2, y2) = (1, 1) ,

q3 := (x3, y3) =
(

r − 2s

r − s
,

s(r − s)
(r − 2s)2

)
.

We denote the matching contribution factor of each point qi by Ti (r, s).
Computing the exact contribution for each point is done according to Pemantle

and Wilson (2008). This involves basic (yet daunting) algebraic manipulations, and is
summarized in Lemma 4.3.1 (proof omitted).

Lemma 4.3.1.

T1 (r, s) = 1,

T2 (r, s) = O(1) ·
(

1 +
√

5
2

)r

,

T3 (r, s) = (r − s)r−s

(r − 2s)r−2s · ss
· 2s

r − 2s
·
√

α

2π
,

where α = O
(

r2

s

)
.

Following ideas from Pemantle and Wilson (2008), we can use Lemma 4.3.1 to
estimate the asymptotic growth of Equation 4.1. Note that the generating function
(Equation 4.4) doesn’t satisfy some conditions from Pemantle and Wilson (2008), so
the resulted estimation is not supported by the proof. Nonetheless, we use the results
to deduce an asymptotic estimation of the recurrence value, which we then support
with an empirical evaluation. Yet, using this estimation to deduce an upper bound for
CBS’s complexity is not straightforward.

Fortunately, by applying Observation 4.1.2 we can obtain an estimated approxima-
tion on Equation 4.1 that is tighter than the bound obtained using the induction-based
analysis (Lemma 4.2.2). We do it by restricting the recurrence to values of r and s that
can be attained in our MAPF setting. Specifically, using r = n · s in Lemma 4.3.1 we
have that,

Proposition 4.3.2. The high-level search complexity of CBS for instances with n ≥ 4
vertices, k agents and an optimal solution cost C is bounded by O

(
(en)kC

)
.

28

We approximate the value of T (ns, s) according to Lemma 4.3.1 and have that

T1 (ns, s) = 1,

T2 (ns, s) = O(1) ·
(

1 +
√

5
2

)ns

,

T3 (ns, s) =
(

(n − 1)n−1

(n − 2)n−2

)s

· 2
n − 2

·

√
β

2πs
,

(4.5)

where β = O
(
n2).

The contribution to T (ns, s) from q1 and q2 (given by T1 (ns, s) + T2 (ns, s)) is
identical to the contribution from q3 (given by T3 (ns, s)) at n0 =

√
5+2
2 ≈ 3.618033 < 4.

In Section 4.4 we empirically demonstrate that T3 (ns, s) indeed constitutes a tight
bound for any n > n0.

Therefore, we continue with the simplification of the expression given by T3 (ns, s).
Since 2

n−2 ·
√

β
2π = O(1) and

(
(n−1)n−1

(n−2)n−2

)
< en, we get the following result:

T (ns, s) = O((en)s),

with a small hidden constant factor in the Big-O notation. By placing s = kC, which
is the maximal number of positive constraints that needs to be applied by CBS in the
worst case, we get the desired bound.

Proposition 4.3.2 improves the original known bound of O
(
2nkC

)
for any set of val-

ues n, k and C. Moreover, it is also tighter than the already-improved bound presented
in Lemma 4.2.2. Notice that it allows to replace the asymptotic factor of kC in the
base of the exponent with a constant (e), while also still eliminating the exponential
dependency in n.

New bounds can also be obtained by combining the results from Section 2.3 that
bound the size of an MDD. For example, using Equation 3.2 we observe that there is a
quadratic dependency between r = kC3 and s = kC on 4-connected grids. By simply
substituting n with C2 in the bound obtained by Proposition 4.3.2 we have that,

Corollary 4.1. The high-level search complexity of CBS on 4-connected grids is bounded
by O

(
(eC)2kC

)
.

4.4 Empirical Evaluation of Bounds

In this section we present an empirical evaluation of the obtained bounds on a variety
of MAPF settings. There are three purposes for this evaluation: (1) to demonstrate the
difference between the new bounds and the original one; (2) to highlight the significance
of the improvement given by the new bounds and (3) to give an empirical evidence for
the tightness of the estimated solution of the recurrence, given in Proposition 4.3.2.

Denote the original bound by ORG, the looser induction-based bound presented in

29

Benchmark n k C ORG REC+IND REC+GF ORG
REC+GF

warehouse-10-20-10-2-2 9,776 8 185 2108
2106

2105
2107

warehouse-10-20-10-2-2 9,776 64 200 2109
2107

2106
2108

warehouse-10-20-10-2-2 9,776 128 206 2109
2107

2106
2108

warehouse-20-40-10-2-2 38,756 64 420 21010
2107

2106
2109

warehouse-20-40-10-2-2 38,756 128 440 21010
2107

2106
2109

warehouse-20-40-10-2-2 38,756 256 450 21010
2108

2107
2109

empty-48-48 2,304 64 70 2108
2106

2105
2107

empty-48-48 2,304 128 74 2108
2106

2105
2107

random-64-64-10 3,687 64 94 2108
2106

2105
2107

random-64-64-10 3,687 128 102 2108
2107

2106
2107

room-64-64-16 3,646 8 120 2107
2105

2104
2106

room-64-64-16 3,646 128 180 2108
2107

2106
2107

Berlin_1_256 47,540 16 324 2109
2106

2105
2108

Berlin_1_256 47,540 256 414 21010
2108

2107
2109

den520d 28,178 8 305 2108
2106

2105
2107

den520d 28,178 16 333 2109
2106

2105
2108

orz900d 96,603 16 2656 21010
2107

2107
2109

orz900d 96,603 64 2990 21011
2108

2108
21010

Table 4.1: A comparison between the different upper bounds obtained using the origi-
nal analysis (ORG), Lemma 4.2.2 (REC+IND) and Proposition 4.3.2 (REC+GF), on
standard benchmarks (Sturtevant, 2012; Stern et al., 2019). The last column presents
a lower bound on the ratio between our improved bound and the original bound, which
reflects the improvement. All bounds are calculated considering that M = nC. The
optimal cost is an averaged cost on multiple random instances for each benchmark. The
exponent values are rounded such that the result constitutes an upper bound for each
function’s value and a lower bound on the ratio in the rightmost column. Note that
all actual bounds include a small constant multiplicative factor, but the comparison in
this table accounts only for the asymptotic factors.

Lemma 4.2.2 by REC+IND, and the tighter generating functions-based bound presented
in Proposition 4.3.2 by REC+GF.

First, we evaluated the bound ratio, that is, the value ORG
REC+GF , for commonly-used

benchmarks (Sturtevant, 2012; Stern et al., 2019). These benchmarks represent a large
variety of MAPF instances (including real-life scenarios). For the second part of the
evaluation, we examined the value of each bound (and the recursion from Equation 4.1)
as a function of the graph’s size, for different settings. A setting is composed of multiple
parameters, i.e., k, C and n, with no guaranteed dependency between them. Therefore,
we define several different ratios between the parameters in order to reflect as much as
possible the relations between the parameters in actual MAPF settings. The behavior
presented in the evaluations is consistent for all other examined ratios as well.

We emphasize that the original bound refers to the basic version of CBS, while the
recurrence-based bounds leverage the structure of CBS with disjoint splitting, which
is a slightly different algorithm. Nevertheless, this comparison allows us to show the
improvement (in the worst-case) that is achieved by using positive constraints in CBS. It

30

also demonstrates the quality of the generating functions-based analysis, which allows
to obtain a tight bound on the recurrence. 1

Evaluation on Standard Benchmarks

We examined benchmarks of many types of grid-based environments. The diversity
of environments represent different possible settings of the problem, with different ra-
tios between the problem’s parameters—n, k and C. The results are summarized in
Table 4.1, which presents the various bounds on the worst-case complexity of CBS’s
high-level search. Beside the numerical evaluation of each bound, we also present the
ratio between ORG and the best newly-obtained bound REC+GF, to demonstrate the
improvement.

We can see that for all benchmarks, the new bound improves on the original one
by a factor of at least 2106 . More precisely, for any instance we examined, we obtain a
significantly tighter bound on the high-level complexity of CBS.

As expected, the bounds obtained by an analysis of the worst-case scenario of an
NP-hard problem are still extremely large for standard instances. Yet, beside the
significant improvement in the worst-case complexity compared to the original bound,
we believe that the tools that we used in order to achieve these bounds can pave the
way for further improving the evaluation of MAPF algorithms.

Empirical Comparison for Different Settings

One challenge that comes up when trying to evaluate the bounds is the fact that the
problem’s complexity depends on several parameters, with no clear relation between
them. The ratios between the graph’s size (n), the number of agents (k), and the opti-
mal solution’s cost (C) are not given, and diverges between different types of instances
(meaning, there is no “correct” way to bound two parameters with the third one, beside
maybe claiming that k ≤ n, which is a trivial but not very interesting case).

We deal with this challenge by examining the bounds for growing values of the
graph’s size, for different ratios between it and the product of k and C. The factor
of kC appears in all bounds, and is also the value that we place in the second variable
of the recursion, representing the maximal number of positive constraints (s = kC).
The different settings we examine cover a wide range of MAPF instances, which help
to strengthen the correctness of the presented results.

In addition, recall that the bound obtained in Proposition 4.3.2 is a chosen empirical
estimate for the recursion, out of several options obtained from the generating functions-
based analysis. To support the correctness of this estimate, we also compared its value
to the recurrence’s value, in all examined settings.

1According to one of the original CBS algorithm authors, using positive constraints in order to
resolve conflicts is the correct and intuitive method that CBS should rely on. This strengthens the
importance in providing a tight upper bound on the complexity of this version of the algorithm.

31

(a) s = log2 n (b) s =
√

n

(c) s = n

Figure 4.2: The log2 of the bounds as a function of the graph size for different ratios
between the graph’s size (n) and the instance properties (s = kC). The two new bounds
(REC+IND, REC+GF) are significantly lower than the original bound. Notice that
the approximation obtained from the generating functions analysis (REC+GF) indeed
tightly bounds the recurrence T (ns, s).

Figure 4.2 presents a comparison (on a logarithmic scale) of the three bounds (ORG,
REC+IND and REC+GF) and T (r, s) for different graph sizes n for the setting r = ns

(Observation 4.1.2). Indeed, for all different cases the same trend can be observed,
where the gap between the presented functions demonstrates the magnitude of the
improvement obtained using our analysis. In addition, the figures serve as an empirical
validation of the generating functions-based analysis—the asymptotic bound (REC+GF)
tightly approximates the recurrence relation (Equation 4.1).

32

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have studied the problem of Multi-Agent Path Finding, which calls for
planning a path for a group of agents which move together in a shared environment.
This problem and its different variants is relevant for many real-world application,
therefore, being able to cope with a wide variety of the problem’s instances effectively
is an important task. In order to help improve the ability of coping with the problem,
we studied the computational aspects of MAPF and one of its most common solvers,
the Conflict-Based Search algorithm. Through an improved analysis of the algorithm’s
complexity we provided novel insights that we see as a first step toward improving
our understanding of the aspects that affect the computational hardness of the MAPF
problem.

We presented two novel approaches for analyzing the worst-case complexity of CBS’s
high-level search. In the first approach, by analyzing the size of an agent’s MDD
graph, we provided two new upper bounds for CBS’s high-level search of: O(2kC3)
and O(2k·(2ρ3+δn)). The latter is a bound for a setting where a solution’s optimal cost
depends on the radius ρ of G. Our approach allows to seamlessly obtain tighter bounds
on CBS’s complexity given tighter bounds on the size of an MDD graph M. Such
bounds may be obtained either by (1) better analyzing the general structure of an
MDD or (2) restricting the analysis to a specific instance of interest.

In the second approach, we presented the recurrence relation T (r, s). An upper
bound on T (r, s) constitutes a bound on the size of the CT of CBS, therefore bounding
the complexity of CBS’s high-level search. Using this approach, we obtain a new general
bound of O((kM)kC). When using M = nC, we obtain the new induction-based bound
of O((knC)kC).

Using a generating functions-based bound, we obtain a tighter bound on the recur-
rence which, in turn, provides a tighter bound for CBS. Observing that there exists a
linear dependence between the number of negative and positive constraints, allows us
to achieve a further improvement, and we eventually obtain a bound of O

(
(en)kC

)
,

33

which improves the original bound on the algorithm by a significant factor for a wide
range of standard benchmarks.

We believe that the recurrence relation can be further improved, in order to better
express the real conditions of a worst-case scenario. An immediate step would be to try
and account for tighter dependencies between the number of constraints that are being
eliminated once a single constraint is applied. In addition, revisiting the conditions on
the recursion’s parameters may allow to tighten the upper-bound on the recursion, and
in turn, on the complexity of CBS.

It is important to note that the new bounds are still somewhat loose and present
a worst-case analysis. However, our analysis paves the way to better pinpoint the
parameters that govern (in the worst case) the algorithm’s computational complexity
as well as to analyze the complexity when restricted to certain settings. Moreover,
it provides a general methodology that can be used to analyze different variants of
the MAPF problem. For example, in the next section (Section 5.2) we show how to
seamlessly account for edge constraints as well as for settings that optimize the sum-
of-costs objective.

5.2 Discussion and Future Work

In this section we present alternative analysis directions and possible applications for
the result of this work, which haven’t matured into completed formal results, but we
hope that they can be of help to anyone working on this research topic. We address
several issues and limitations that arose during the course of this work, and suggest
how to handle them. In addition, we suggest several directions for using our results in
order to improve the ability of dealing with the MAPF problem.

Accounting for Edge-Constraints in CBS’s Analysis

Recall that the analysis we performed in Chapters 3 and 4 (as well as the original
analysis from (Sharon et al., 2015)) accounted for vertex constraints only. We now
show a simple approach to account for edge constraints using the existing analysis.
Accounting for edge constraints directly is left for future work.

Counting edge constraints as vertex constraints Notice that an edge constraint
implicitly defines two vertex constraints (forcing agent ai to traverse (u, v) at time t

corresponds to the constraint that ai has to be at vertices u and v at times t and t + 1,
respectively). Thus, we can simply increase the number of vertex constraints by the
number of possible edge constraints (which is twice the number of edges, as each edge
can be traversed in both directions). Specifically, on 4-connected-grids, each node has
at most four outgoing and incoming edges, therefore, using the original analysis, the
number of negative constraints would increase to nkC + 8nkC = 9nkC in the worst-

34

case. For the general case where |E| ≤ n2, the number of negative constraints would
increase to (2n2 + n) · kC in the worst-case. We emphasize that while the increase
may seem negligible, the actual worst-case complexity is exponential in the number of
negative constraints, and the additional constraints would appear in the exponent of
the original bound. For example, the original bound of O(2nkC) would be O(29·nkC).

A similar approach can be applied to the recursion-based bounds presented in Chap-
ter 4. We can consider a total number of negative constraints of r = 9nkC, which also
includes the negative edge-constraints. One can show that Equation 4.1 still upper-
bounds the number of expanded nodes in CBS’s high-level search. Thus, by substitut-
ing r = 9nkC in Proposition 4.3.2 we obtain a bound of O

(
(9en)kC

)
.

It is important to note that accounting for edge constraints increases the relative
improvement of the bounds we present over the original bound. This is because in our
bound, the additional work is reflected by increasing the base of the exponent rather
than the exponent itself, as in the original bound.

Counting MDD edges In Corollary 3.1 the size of an MDD is defined as the number
of MDD vertices. However, if we wish to account for edge constraints, the same result
holds simply by changing the definition of the size of an MDD to be the number of MDD
vertices and edges. For instance, on a 4-connected grid, the maximal (outgoing) degree
of each MDD node is five. Therefore, the total number of MDD edges is bounded by
five times the number of MDD vertices. Using Equation 3.2, the total number of vertex
and edge constraints is bounded by (1 + 5) · O

(
C3). We then update Lemma 3.2.1 to

incorporate edge constraints, and get a bound of 2O(kC3) (with a small hidden constant
factor slightly larger than 1).

Analysis for the Sum-of-Costs (SoC) Objective

The bounds we provided (Chapters 3 and 4) were obtained and expressed using C—an
upper-bound on a single agent’s path length in an optimal solution. In the setting
where we seek to minimize the makespan, C is indeed an optimal solution’s cost. Un-
fortunately, this is not the case for the SoC objective.

One way to use our results when using SoC as the optimization objective is to
observe that kC is an upper bound on the optimal solution’s cost. Namely, de-
note C ′ = kC and use C ′ instead of kC in all the bounds presented. For example, our
generating function-based analysis for the SoC objective yields the bound of O

(
(en)C′

)
.

Since C is an upper bound on a single-agent’s solution’s cost, the obtained bound on
the algorithm’s complexity in this case would be very loose.

MDD Size Analysis Based on the Distance between Start and Goal

In the analysis presented in Chapter 3, we provided several bounds on the size of
an MDD graph on grids, all of them under a worst-case assumption that the start

35

and goal locations of an agent are located at the same vertex (Observation 3.1.2).
Here, we suggest to remove this assumption, and assume a distance dist (si, gi) = d

(Definition 3.3.2) between the agent’s start and goal locations. This reflects a much
more realistic scenario, and allows to address the bound on the number of constraints for
each agent separately (which should result in a tighter total bound on the complexity).
The idea is to use the ratio between an optimal solution’s cost C and d in order to
express the bound on M.

The addition of a distance between the start and goal makes the analysis of the
MDD size much more complicated, since it removes the symmetry over the graph’s
structure. Therefore, we only give a high-level idea for how to approach this analysis,
and highlight possible outcomes and difficulties.

First, we observe that the case where C < d is trivial, since there is no valid path
for the agent which will transfer it from si to gi in at most C steps. For C ≥ d, the
worst-case, which results in the largest possible MDD, is when si and gi lay at the
opposite corners of a square with a side of length d/2 (for simplicity assume d is even,
otherwise bound any case where d is odd with d + 1).

We divide the remaining cases for (1) C = d and (2) C > d. The first case is simple,
since the agent would have to advance towards the goal at each time-step without the
ability to get farther from gi or wait at any vertex. The outcome is that the size of an
MDD graph for length C between two vertices at distance d, where C = d, is bounded
by O

(
C2) = O

(
d2) (with a hidden constant smaller than 1). The explanation for this

result is that in this case, the t’th MDD layer contains exactly the vertices on the t’th
diagonal from the start location, which is of size of exactly t + 1 (for any t ≤ d/2, and
the other half is symmetric). The total MDD size is therefore:

M ≤ 2 ·
C/2−1∑

t=1
t + 1 + (C/2 + 1) = C2 + 6C

8
= O

(
C2
)

. (5.1)

By substituting the bound of Equation 5.1 in Corollary 3.1, we get a tighter bound on
CBS’s high-level search (for the case where C = d), of O

(
2kC2

)
.

The case where C > d is much more complicated to bound. We only outline the
challenges that need to be solved in order to be able to give a bound for this general
case. The task of finding a non-trivial bound for this case remains an open question.
As a first step, we can assume that if C ≫ d, then the asymptotic bound is reduced
back to the scenario presented in Section 3.2, since the distance between si and gi is
negligible compare to C, and so C would govern the asymptotic bound.

So, assume that C > d, but is of the same order of magnitude, that is, C exceeds d

by a small constant value. The main challenge in the analysis comes from the fact
that in this case the agent might take steps that get it farther from the goal, but still
have enough steps “left” to reach the goal within C time-steps. The number of these
additional vertices that are added to the MDD can’t be precisely bounded. It gets more

36

complicated, because the steps which take the agent farther from gi can be taken at
any point during the planning, which would increase each layer in the agent’s MDD.
We believe that in order to provide a non-trivial bound for this case, more assumptions
are required (on the possible movement of the agent “outside of the d/2 × d/2 square”,
on the location of the start and the goal, etc.).

Improve CBS in Practice

Throughout this work we present several observations, which we see as a first step to
improve our understanding of the hardness of the MAPF problem. For instance, in
Chapter 3 we discuss the dependence of the graph’s size on the problem’s complexity,
and use it later to provide refined upper-bounds. We provide a new understanding that
the worst-case complexity of CBS depends more on the graph’s radius rather than on
the graph’s size. Another such observation is reflected in the incorporation of positive
constraints in our recurrence-based analysis. It focuses on the importance of positive
constraints by demonstrating the huge reduction in the search tree’s size.

We hope that these observations would allow, in addition to improving the theoret-
ical analysis of CBS, to be used to improve the algorithm in practice. One possible way
to approach this task is to use these observations to develop heuristics. For instance,
by favoring expansion of CT nodes with a large number of positive constraints or with
a minimal amount of projected work that remains to be done by the algorithm.

Extended Complexity Analysis

The analysis techniques presented in this work utilize several observations regarding the
MAPF problem in order to improve the complexity bound on CBS. However, there are
additional aspects of the problem, as well as additional improvements of CBS, that may
be incorporated into the analysis and would allow to further improve the upper-bounds.

For instance, tools such as prioritizing conflicts (Boyarski et al., 2015) may affect the
maximal size of an MDD graph. They may also allow to further refine the recurrence
relation such that it would capture the progress of CBS computation more accurately.
Symmetry-breaking (Li et al., 2019c, 2020a) and different heuristics for the high-level
search of CBS are additional improvements that could to be incorporated into the
analysis framework that we presented.

Another aspect of this work that can be extended is the focus on CBS for the
purpose of hardness analysis. As mentioned in Section 1, there are other successful ap-
proaches for dealing with the MAPF problem, both search-based (that extend CBS or
are similar to it in the main idea) and compilation-based (such as SAT-based solvers).
Applying the same analysis, even on algorithms that are similar to CBS (such as ID-
CBS and ICTS), is not straightforward, and would require adjustments to the analysis
framework. Nevertheless, we believe that the conceptual and mathematical tools that
we presented for the analysis of CBS could be used to analyze the complexity of other

37

MAPF algorithms, which in turn, might allow to further improve the understanding of
aspects that make the problem difficult.

38

Appendix A

Generating Functions Based Analysis
for Recurrence Asymptotic
Approximation

This appendix contains a detailed explanation regarding the technique for bounding the
recurrence relation presented in Lemma 4.1.1. It includes a large part of the mathemat-
ical tools described by Pemantle and Wilson (2008) which are relevant to the specific
analysis that was preformed in this work.

It is important to emphasize, as mentioned in Section 4.3, that this analysis does
not provide a formal proof for the resulting upper bound, but rather helps to deduce
potential candidates for possible tight upper-bound for the recurrence relation. In our
work, we examined the resulting bound against the values of the recurrence, and found
out that it does constitute an empirical upper-bound.

The Recurrence Relation Generating Function

Equation 4.1 presents a recurrence relation T (r, s) which forms an upper-bound on the
complexity of the high-level search of the CBS algorithm. In order to get an estimated
upper-bound on T , we solve the recurrence corresponding to the case in which all
inequalities in Equation 4.1 are tight.

The first step in our analysis requires finding the generating function of T (r, s).
This means that T (r, s) is the coefficient of xrys in F :

F (x, y) =
∑

r,s≥0
T (r, s) xrys. (A.1)

Obtaining the exact form of F (x, y) is done using the following equation (for further
reading about finding generating functions for recurrences with multiple variables, we

39

refer the readers to Chapter 1.5 in (Wilf, 2006)):
∑

r,s≥0
T (r + 2, s + 1) xrys =

∑
r,s≥0

T (r + 1, s + 1) xrys

+
∑

r,s≥0
T (r, s) xrys

+
∑

r,s≥0
xrys.

The computation involves algebraic simplification and substitution of the sums with F (x, y)
according to Equation A.1:

1
x2y

(
F (x, y) − 1 − y

1 − y
− x

1 − x
− 3xy

1 − y

)
=

F (x, y) + 1
xy

·
(

F (x, y) − 1 − y

1 − y
− x

1 − x

)
+

1
(1 − x) (1 − y)

,

which, eventually gives the following generating function for the recurrence:

F (x, y) = 1 − x + 2xy − x2y

(1 − x)(1 − y)(1 − x − x2y)
. (A.2)

Approximation Analysis Method

Critical Points

In order to get a closed-form formula which approximates the value of T (r, s), we follow
the analysis by Pemantle and Wilson (2008). As stated in Section 4.3, this method does
not allow to prove the bound’s correctness for a recurrence relation of the form that we
have, but it does allow us to obtain an estimated bound, which we empirically evaluate
to be precise.

The first step is to express the function as a ratio F = G/H, that is:

G (x, y) = 1 − x + 2xy − x2y,

H (x, y) = (1 − x)(1 − y)(1 − x − x2y).

We use Hx, Hy, Hxx, Hyy, Hxy for the partial derivatives of H with respect to the sub-

40

scripted variables:

Hx = (1 − y)(3x2y − 2x(y − 1) − 2),

Hy = (1 − x)(x2(2y − 1) + x − 1),

Hxx = −2(y − 1)((3x − 1)y + 1),

Hyy = −2x2(x − 1),

Hxy = x2(3 − 6y) + 4x(y − 1) + 2.

(A.3)

We need to find the critical points which are given by the solutions of the following
system in the positive quadrant (x, y > 0):

H = 0

sxHx = ryHy.

There are three solutions of the system in the positive quadrant:

(x1, y1) =
(

−1 +
√

5
2

, 1
)

(x2, y2) = (1, 1)

(x3, y3) =
(

r − 2s

r − s
,

s(r − s)
(r − 2s)2

)
.

(A.4)

The third solution is missing when r = s or r = 2s. Suppose that m < r/s < M

for m > 0, M < ∞. Then according to the work of Pemantle and Wilson (2008), each
critical point contributes some asymptotic factor to the possible upper bound of the
recursion. We denote the matching contribution factor of each point (xi, yi) by Ti (r, s).

The contribution by each point is given by a different formula, depending on the
point’s multiplicity.

Let H = HxxHyy − Hxy. Then the contribution Ti of a multiple point (xi, yi) is
given by:

Ti (r, s) = x−r
i y−s

i

G (xi, yi)√
−x2

i y2
i H (xi, yi)

. (A.5)

Let:

Q (x, y) = − xHxy2H2
y − yHyx2H2

x − y2H2
y x2Hxx

− x2H2
xy2Hyy + 2xHxyHyxyHxy,

(A.6)

Then the contribution Ti of a single point (xi, yi) is given by:

Ti (r, s) = G (xi, yi)√
2π

x−r
i y−s

i

√
−yiHy (xi, yi)

sQ (xi, yi)
. (A.7)

When H doesn’t contain quadratic factors, a point is considered “single” if the value

41

of the gradient of H at the point is non-zero. Otherwise, it is considered “multiple”.

Multiple Points’ Contribution

The points (x1, y1) and (x2, y2) from Equation A.4 are both multiple points. The
corresponding values of H and G functions for those points are:

H (x1, y1) = 15
√

5
2

− 35
2

, G (x1, y1) =
√

5 − 1,

H (x2, y2) = −1, G (x2, y2) = 1.

The points’ contributions, given by substituting the aforementioned values in Equa-
tion A.5, are:

T1 (r, s) ∼
(4

3
√

5 − 5

)
·
(

1 +
√

5
2

)r

T2 (r, s) = G (1, 1)√
−H

= 1.

(A.8)

Single Points’ Contribution

The point (x3, y3) from Equation 4.3 is a single point. According to Equation A.6 and
Equation A.7, its contribution is:

T3 (r, s) = (r − s)r−s

(r − 2s)r−2s · ss
· 2s

r − 2s
·
√

α

2π
, (A.9)

where α = O(r2

s).

Obtained Recurrence Approximation

In Section 4.3, we presented the motivation for computing a bound for the specific case
where there is a linear dependence between r and s, namely, r = ns for a given n ∈ N.
For this case, by simply substituting r and reducing the fractions, we get the following
factors for each critical point:

T1 (ns, s) = 1,

T2 (ns, s) =
(4

3
√

5 − 5

)
·
(

1 +
√

5
2

)ns

,

T3 (ns, s) =
(

(n − 1)n−1

(n − 2)n−2

)s

· 2
n − 2

·

√
β

2πs
,

(A.10)

where β = O
(
n2).

We care about finding the component in Equation A.10 which closely approximates
the value of T (ns, s). First, observe that 2

n−2 ·
√

β
2π is asymptotically O(1). Now, let n0

42

be the solution of
(n − 1)n−1

(n − 2)n−2 =
(

1 +
√

5
2

)n

,

which is n0 =
√

5+2
2 ≈ 3.618033. Note that we intentionally omit the multiplication

by 1/
√

s, which is insignificant asymptotically in this case.
Each of the critical points’ contribution is used to approximate the recursion value

for a certain range of values of n. Empirically, we get that if n < n0 then the contri-
bution of the multiple points gives a tight approximation:

T (ns, s) ∼ 1 +
(4

3
√

5 − 5

)
·
(

1 +
√

5
2

)ns

,

which is the same, asymptotically, as the ns’th Fibonacci number.
If n ≥ n0 then the approximation is given by the contribution of the single point,

therefore:
T (ns, s) ∼

(
(n − 1)n−1

(n − 2)n−2

)s

· 1√
s

,

where we assume that ∼ ignores a constant factor within the approximated expression.
We are interested in the asymptotic behavior of this approximation, therefore we

focus on the formula obtained for n ≥ n0. We notice that (n−1)n−1

(n−2)n−2 < en, thus, in
conclusion we get the following upper bound on T :

T (ns, s) ∼ (en)s

√
s

. (A.11)

43

44

Bibliography

Banfi, J., Basilico, N., and Amigoni, F. (2017). Intractability of Time-Optimal Multi-
robot Path Planning on 2D Grid Graphs with Holes. IEEE Robotics and Automation
Letters, 2:1941–1947.

Barer, M., Sharon, G., Stern, R., and Felner, A. (2014). Suboptimal variants of the
conflict-based search algorithm for the multi-agent pathfinding problem. Symp. on
Combinatorial Search, SoCS, pages 19–27.

Barták, R., Ivanová, M., and Švancara, J. (2021). From classical to colored multi-agent
path finding. Symp. on Combinatorial Search, SoCS, pages 150–152.

Boyarski, E., Felner, A., Harabor, D., Stuckey, P. J., Cohen, L., Li, J., and Koenig, S.
(2020). Iterative-deepening conflict-based search. In Bessiere, C., editor, Int. Joint
Conf. on Artificial Intelligence, IJCAI, pages 4084–4090.

Boyarski, E., Felner, A., Le Bodic, P., Harabor, D. D., Stuckey, P. J., and Koenig, S.
(2021). f-aware conflict prioritization & improved heuristics for conflict-based search.
Proceedings of the AAAI Conference on Artificial Intelligence, pages 12241–12248.

Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., and Shimony, E.
(2015). ICBS: Improved conflict-based search algorithm for multi-agent pathfinding.
Int. Joint Conf. on Artificial Intelligence, IJCAI, pages 740–746.

Cohen, L., Uras, T., Kumar, T. K. S., Xu, H., Ayanian, N., and Koenig, S. (2016). Im-
proved solvers for bounded-suboptimal multi-agent path finding. In Kambhampati,
S., editor, Int. Joint Conf. on Artificial Intelligence, IJCAI, pages 3067–3074.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, page 151–158. Associ-
ation for Computing Machinery.

Felner, A., Li, J., Boyarski, E., Ma, H., Cohen, L., Kumar, T. K., and Koenig, S.
(2018). Adding heuristics to conflict-based search for multi-agent path finding. In
International Conference on Automated Planning and Scheduling, ICAPS, pages 83–
87. AAAI press.

45

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. IEEE Trans. on Systems Science and
Cybernetics, 4:100–107.

Kaduri, O., Boyarski, E., and Stern, R. (2020). Algorithm selection for optimal multi-
agent pathfinding. In International Conference on Automated Planning and Schedul-
ing, ICAPS, pages 161–165. AAAI press.

Kaduri, O., Boyarski, E., and Stern, R. (2021). Experimental evaluation of classical
multi agent path finding algorithms. Symp. on Combinatorial Search, SoCS, pages
126–130.

Kilani, Y., Bsoul, M., Alsarhan, A., and Al-Khasawneh, A. (2013). A survey of the
satisfiability-problems solving algorithms. International Journal of Advanced Intelli-
gence Paradigms, 5:233–256.

Li, J., Felner, A., Boyarski, E., Ma, H., and Koenig, S. (2019a). Improved heuristics
for multi-agent path finding with conflict-based search. Int. Joint Conf. on Artificial
Intelligence, IJCAI, pages 442–449.

Li, J., Gange, G., Harabor, D., Stuckey, P. J., Ma, H., and Koenig, S. (2020a). New
techniques for pairwise symmetry breaking in multi-agent path finding. International
Conference on Automated Planning and Scheduling, ICAPS, 30:193–201.

Li, J., Harabor, D., Stuckey, P. J., Felner, A., Ma, H., and Koenig, S. (2019b). Disjoint
splitting for multi-agent path finding with conflict-based search. In International
Conference on Automated Planning and Scheduling, ICAPS, pages 279–283. AAAI
press.

Li, J., Harabor, D., Stuckey, P. J., Ma, H., and Koenig, S. (2019c). Symmetry-breaking
constraints for grid-based multi-agent path finding. Symp. on Combinatorial Search,
SoCS, pages 184–185.

Li, J., Ruml, W., and Koenig, S. (2020b). EECBS: A bounded-suboptimal search for
multi-agent path finding. CoRR, abs/2010.01367.

Ma, H., Harabor, D., Stuckey, P. J., Li, J., and Koenig, S. (2019). Searching with
consistent prioritization for multi-agent path finding. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 7643–7650. AAAI Press.

Pallottino, L., Scordio, V. G., Bicchi, A., and Frazzoli, E. (2007). Decentralized coop-
erative policy for conflict resolution in multivehicle systems. IEEE Trans. Robotics,
23(6):1170–1183.

Pemantle, R. and Wilson, M. C. (2008). Twenty combinatorial examples of asymp-
totics derived from multivariate generating functions. SIAM Journal on Computing,
50(2):199–272.

46

Salzman, O. and Stern, R. (2020). Research challenges and opportunities in multi-
agent path finding and multi-agent pickup and delivery problems. In International
Conference on Autonomous Agents and Multiagent Systems, AAMAS, pages 1711–
1715. International Foundation for Autonomous Agents and Multiagent Systems.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R. (2015). Conflict-based search
for optimal multi-agent pathfinding. Artificial Intelligence, 219:40–66.

Sharon, G., Stern, R., Goldenberg, M., and Felner, A. (2013). The increasing cost tree
search for optimal multi-agent pathfinding. Artificial Intelligence, 195:470–495.

Silver, D. (2005). Cooperative pathfinding. In Proceedings of the AAAI Conference on
Artificial Intelligence, page 117–122. AAAI Press.

Stern, R., Sturtevant, N. R., Felner, A., Koenig, S., Ma, H., Walker, T. T., Li, J.,
Atzmon, D., Cohen, L., Kumar, T. K. S., Boyarski, E., and Bartak, R. (2019). Multi-
agent pathfinding: Definitions, variants, and benchmarks. Symp. on Combinatorial
Search, SoCS, pages 151–158.

Sturtevant, N. (2012). Benchmarks for grid-based pathfinding. IEEE Trans. on Com-
putational Intelligence and AI in Games, 4:144–148.

Surynek, P. (2012). Towards optimal cooperative path planning in hard setups through
satisfiability solving. In Anthony, P., Ishizuka, M., and Lukose, D., editors, PRICAI
2012: Trends in Artificial Intelligence - 12th Pacific Rim, volume 7458 of Lecture
Notes in Computer Science, pages 564–576. Springer.

Surynek, P. (2014). Compact representations of cooperative path-finding as SAT based
on matchings in bipartite graphs. In IEEE International Conference on Tools with
Artificial Intelligence, ICTAI, pages 875–882. IEEE Computer Society.

Surynek, P. (2021). Multi-goal multi-agent path finding via decoupled and integrated
goal vertex ordering. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 12409–12417. AAAI Press.

Surynek, P., Felner, A., Stern, R., and Boyarski, E. (2016). Efficient sat approach
to multi-agent path finding under the sum of costs objective. In Proceedings of the
Twenty-Second European Conference on Artificial Intelligence, page 810–818. IOS
Press.

Surynek, P., Felner, A., Stern, R., and Boyarski, E. (2017a). Modifying optimal sat-
based approach to multi-agent path-finding problem to suboptimal variants. In Fuku-
naga, A. and Kishimoto, A., editors, Symp. on Combinatorial Search, SoCS, pages
169–170. AAAI Press.

47

Surynek, P., Svancara, J., Felner, A., and Boyarski, E. (2017b). Integration of indepen-
dence detection into sat-based optimal multi-agent path finding - A novel sat-based
optimal MAPF solver. In van den Herik, H. J., Rocha, A. P., and Filipe, J., edi-
tors, Proceedings of the 9th International Conference on Agents and Artificial, pages
85–95. SciTePress.

Walker, T. T., Sturtevant, N. R., Felner, A., Zhang, H., Li, J., and Kumar, T. K. S.
(2021). Conflict-based increasing cost search. International Conference on Automated
Planning and Scheduling, ICAPS, pages 385–395.

Wilf, H. S. (2006). Generatingfunctionology. A. K. Peters, Ltd.

Wurman, P. R., D’Andrea, R., and Mountz, M. (2008). Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. Artificial Intelligence, 29(1):9–20.

Yu, J. (2016). Intractability of optimal multirobot path planning on planar graphs.
IEEE Robotics and Automation Letters, 1:33–40.

Zhang, H., Li, J., Surynek, P., Koenig, S., and Satish Kumar, T. K. (2020). Multi-agent
path finding with mutex propagation. In International Conference on Automated
Planning and Scheduling, ICAPS, pages 323–332. AAAI press.

48

ולהיות יעיל, באופן פיתרון למצוא MAPF בעית של השונים האלגוריתמים של ליכולת גבוהה חשיבות

תרחישים. של רחב מגוון עם להתמודד מסוגלים

המקרה עבור ,CBS אלגוריתם של הסיבוכיות לחסם הקיים הניתוח הינה זו לעבודה המוצא נקודת

כלים הפעלת באמצעות אותה ומשפרים הקיימת, האנליזה על מתבססים אנו זו בעבודה ביותר. הגרוע

CBS של והיכולת הבעיה של הקושי על המשפיעים הגורמים אודות חדשות ואבחנות שונים מתמטיים

בשיטה משלימות: שיטות שתי על מבוססת בעבודה המוצגת האנליזה יעיל. באופן איתה להתמודד

מבנה של המקסימלי הגודל ניתוח באמצעות האלגוריתם של הריצה זמן את חוסמים אנו הראשונה,

ייצוג מכיל אשר שכבות גרף – Multi-valued Decision Diagram (MDD) הנקרא ייחודי נתונים

נתון. מסלול אורך עבור הגרף, על נקודות שתי בין סוכן עבור האפשריים המסלולים כלל של קומפקטי

אלגוריתם של החיפוש מרחב גודל על החסם את לשפר לנו מאפשר MDD-ה גרף גודל על החסם

הגרוע. במקרה CBS

רקורסיבית נוסחה באמצעות האלגוריתם של הריצה זמן סיבוכיות על חסם מביעים אנו השניה, בשיטה

הדוק באופן לחסום בכדי יוצרות פונקציות על המבוססת אנליזה בשיטת משתמשים אנחנו חדשה.

הרקורסיבית. הנוסחה את

זמן סיבוכיות עבור ומשופרים חדשים עליונים חסמים מספר מציגים אנחנו הללו השיטות באמצעות

מגוון עבור האלגוריתם על הידוע החסם את להדק לנו מאפשרות התוצאות .CBS אלגוריתם של הריצה

אנו ,(benchmarks) סטנדרטיים תרחישי-מבחן של רחב אוסף על לדוגמא, תרחישים. של מאוד רחב

מציגים אנו בנוסף, המוכר. החסם לעומת ,2106
לפחות של בפקטור העליון החסם של שיפור רואים

להרחיב יאפשרו כי מקווים אנו אשר אפשריים, מחקריים המשך ובצעדי בתוצאות דיון של מורחב פרק

.MAPF בעית של הקושי על המשפיעים הגורמים אודות ההבנה שיפור לקראת הנ"ל, המחקר כיוון את

ii

תקציר

סוכנים קבוצת עבור מסלולים אוסף למצוא נדרש (MAPF) סוכנים" מרובת מסלול "תכנון בבעית

הולך עניין זו לבעיה השני. עם אחד מתנגשים אינם שהמסלולים כך נתונה, משותפת בסביבה הנעים

היישומים עקב והרובוטיקה, המלאכותית הבינה בתחומי המחקר קהילת בקרב האחרונות בשנים וגובר

.MAPF בעית מאחורי התיאוריה על בהסתמך למידול ניתנים אשר האמיתי מהעולם הרבים

אופטימלי פיתרון מציאת יעיל, לפיתרון ניתנת אשר בעיה זו יחיד סוכן עבור מסלול שתכנון אף על

אשר אלגוריתמיות גישות מספר קיימות זאת, עם חישובית. קשה משימה הינה MAPF בעית עבור

אפקטיבי. באופן הבעיה של טריוויאליים לא תרחישים עם להתמודד מאפשרות

אלגוריתם הינו הבעיה, עבור אופטימלי פיתרון למציאת משמש אשר המובילים, מהאלגוריתמים אחד

בפועל הבעיה של תרחישים של רחב מגוון עם מתמודד זה אלגוריתם .Conflict-Based Search (CBS)
תחת אפילו אופטימלי, פיתרון למצוא יצליח לא שבהם רבים תרחישים ישנם זאת, עם אך יעיל, באופן

מאפיינים בעליי אינם מתקשה האלגוריתם בהם שהתרחישים לראות מעניין מאוד. ארוך זמן-ריצה

ביעילות להתמודד מצליח האלגוריתם איתם אחרים מתרחישים אותם מבדילים אשר כלשהם ייחודיים

בעית של החישובי הקושי על המשפיעים הגורמים אודות שלנו בהבנה גדול פער ישנו כלומר, רבה.

איתה. להתמודד השונים האלגוריתמים של היכולת ועל MAPF

הקושי על שמשפיעים המרכזיים הגורמים על אור לשפוך ומנסים זו לבעיה מתייחסים אנו זו בעבודה

אלגוריתם של הריצה זמן סיבוכיות ניתוח של מחודשת בחינה תוך זאת עושים אנחנו הבעיה. של

הגרוע. במקרה האלגוריתם של הריצה זמן על התיאורתי החסם את להדק במטרה ,CBS

מחסנים ניהול של הבעיה הינה זו לעבודה מוטיבציה שואבים אנו מהן המרכזיות מהבעיות אחת

אשר רובוטים של ואוסף מוצרים המאחסנים ממדפים המורכב מחסן ישנו זו בבעיה אוטונומי.

נעים הרובוטים ושילוח. אריזה לנקודות אותם ולהוביל מדפים/מוצרים ולהרים במרחב לנוע מסוגלים

הפריקה. לנקודות ומשם לאסוף צריך הוא אותו המדף אל אחד כל המוצא, מנקודות במחסן במקביל

שיותר כמה באופן המשימות את ויבצעו יתנגשו שאינם כך מהרובוטים אחד לכל מסלול לתכנן נדרש

מאפשרת MAPF בעית וכד'). הנסיעה מרחק הכולל, האינדיבידואלי, הביצוע זמן (מבחינת אופטימלי

לשמש, יכולים MAPF בעית של המתמטי המודל עבור ופתרונות המחסן ניהול משימת את למדל

אוטונומי. באופן מחסנים ניהול עבור האמיתי, בעולם שבתנועה למגבלות התאמות תוך

משחקי כגון ,MAPF בעית באמצעות מלא/חלקי למידול ניתנים אשר נוספים רבים יישומים ישנם

רובוטים. מבוססות נוספות ואפליקציות אוטונומיים רכבים של תנועה ניהול משתתפים, מרובי מחשב

ישנה ולכן מוגבל, חישוב בזמן לבעיה שניתן ככל אופטימלי פיתרון למצוא נדרש הללו היישומים לכלל

i

המחשב. למדעי בפקולטה זלצמן, אורן דוקטור של בהנחייתו בוצע המחקר

תקופת במהלך בכנס למחקר ושותפיו המחבר מאת כמאמר פורסמו זה בחיבור התוצאות מן חלק

המחבר: של המגיסטר מחקר

Gordon, O., Filmus, Y., and Salzman, O. (2021). Revisiting the complexity analysis of
conflict-based search: New computational techniques and improved bounds. In Proceedings
of the Fourteenth International Symposium on Combinatorial Search, SOCS 2021, Virtual
Conference [Jinan, China], July 26-30, 2021, pages 64–72. AAAI Press.

תודות

מצוין, ומנטור מנחה היותו על זלצמן, אורן דוקטור שלי, למנחה להודות רוצה אני ובראשונה, בראש

ועם בסבלנות אותי ולהדריך להנחות שעזר ועל והמחקר, הלימודים אורך לכל לי שנתן ההשראה על

המחקר. לעולם רבה תשוקה

המועילות תובנותיו על המחשב למדעי מהפקולטה פילמוס יובל לפרופסור להודות ברצוני בנוסף,

למחקר. רבות שתרמו

הפעולה ושיתוף הדיונים על חישובית לרובוטיקה מהמעבדה לחברים כן גם להודות ברצוני

בדרך. צעד בכל לצידי שעומדת האהובה ולאשתי המועילים,

בזכותם. הוא שהשגתי מה כל - להוריי זו עבודה להקדיש ברצוני לבסוף,

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

מסלול תכנון בעיית של הקושי הבנת לקראת
סוכנים מרובת

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

גורדון אופיר

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2021 אוקטובר חיפה התשפ"ב תשרי

מסלול תכנון בעיית של הקושי הבנת לקראת
סוכנים מרובת

גורדון אופיר

	List of Figures
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 MAPF Formulation
	2.2 The CBS Algorithm and its Complexity Analysis
	2.3 Multi-valued Decision Diagrams (MDD)
	2.4 Generating Functions Approach for Bounding a Recurrence Relation

	3 Complexity Analysis of CBS using an MDD Size Bound
	3.1 Bounding the Number of Constraints using MDD Size
	3.2 General Upper Bound on the Size of an MDD
	3.3 MDD Size Analysis Based on the Graph's Radius

	4 Complexity Analysis of CBS using a Recurrence Relation
	4.1 Recurrence Relation which Bounds CBS's Worst-Case Complexity
	4.2 Induction-Based Bound
	4.3 Generating Functions-Based Bound
	4.4 Empirical Evaluation of Bounds

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Discussion and Future Work

	A Generating Functions-Based Analysis for Asymptotic Approximation of Recurrences
	Bibliography
	Hebrew Abstract

