
Cooperative Multi-Agent Path
Finding

Nir Greshler

Cooperative Multi-Agent Path
Finding

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

Nir Greshler

Submitted to the Senate
of the Technion — Israel Institute of Technology
Heshvan 5782 Haifa October 2021

This research was carried out under the supervision of Prof. Nahum Shimkin, of the Faculty of
Electrical & Computer Engineering, and Dr. Oren Salzman, of the faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research collab-
orators in conferences and journals during the course of the author’s doctoral research period,
the most up-to-date versions of which being:

Nir Greshler, Ofir Gordon, Oren Salzman, and Nahum Shimkin. Cooperative multi-agent path finding:
Beyond path planning and collision avoidance. Accpeted to the 3rd IEEE International Symposium
on Multi-Robot and Multi-Agent Systems (MRS), 2021.

The following paper has been published during my M.Sc. studies but is not a part of this
work:

Guy Revach, Nir Greshler, Nahum Shimkin. Planning for Cooperative Multiple Agents with Sparse
Interaction Constraints. In he online Proceedings of the 6th Workshop on Distributed and Multi-Agent

Planning (DMAP) at ICAPS, pages 48-56, 2020.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3

2 Background and Related Work 8
2.1 Multi-Agent Path Finding (MAPF) . 8
2.2 MAPF with Task Assignment . 10
2.3 Multi-Agent Pickup and Delivery (MAPD) . 12
2.4 Extensions to Classical MAPF . 13

3 Cooperative Multi-Agent Path Finding (Co-MAPF) 15
3.1 Introduction . 15
3.2 Classical Multi-Agent Path Finding (MAPF) . 15
3.3 Formulating the Co-MAPF Problem . 17
3.4 Source-Connected Co-MAPF Instances . 19

4 Optimal Algorithm for Solving the Co-MAPF Problem 22
4.1 Conflict-Based Search (CBS) . 23
4.2 Cooperative Conflict-Based Search (Co-CBS) . 23
4.3 Co-CBS Example . 27
4.4 Co-CBS Theoretical Analysis . 28
4.5 Improved Co-CBS: Prioritizing Conflicts and Lazy Expansion 32

5 Task Assignment for Cooperative MAPF 35
5.1 Assignment Problems . 36
5.2 Cooperative Task Assignment as a 3-D Assignment Problem 38
5.3 Cooperative Conflict-Based Search with Task Assignment 39
5.4 Greedy Assignment Approach . 40

6 Experimental Evaluation 43
6.1 Setup and Benchmarks . 43
6.2 Co-CBS Empirical Evaluation . 45
6.3 Co-CBS with Task Assignment . 46

7 Conclusion and Future Work 52
7.1 Summary . 52
7.2 Future Work . 53

A Planning for Cooperative Multiple Agents with Sparse Interaction Constraints 57
A.1 Introduction . 57
A.2 Model . 59
A.3 DIPLOMA - Distributed Planning and Optimization Algorithm for Multiple Agents 61
A.4 Experiments . 67
A.5 Extension to Asymmetric Interactions . 69
A.6 Discussion and Future Work . 70

Hebrew Abstract i

List of Figures

1.1 A MAPF problem on a 4-connected grid . 4
1.2 Autonomous warehouse robots . 5
1.3 Improved warehouse scenario with cooperative robots 6

3.1 A cooperative task . 18
3.2 A non-solvable MAPF instance . 19
3.3 Source-connected Co-MAPF instances . 20

4.1 Co-CBS example instance . 28
4.2 Co-CBS search forest. 29
4.3 MDDs for classical MAPF . 33
4.4 MDDs for Co-MAPF . 34

6.1 Benchmark maps. 44
6.2 Success rates. 46
6.3 Searching the meetings space . 47
6.4 The average cost increase over the optimal cost using the (sub-optimal) baseline

planner. 47
6.5 Success rates solving the task assignment problem. 49
6.6 Success rates solving the task assignment problem. 50
6.7 Run-time of solving the task assignment problem. 51

A.1 Factor graph example. 66
A.2 A box-collecting problem. 68
A.3 DIPLOMA simulation results. 68

Abstract

In this research, we introduce and study the Cooperative Multi-Agent Path Finding (Co-MAPF)
problem, an extension to the classical MAPF problem, where cooperative behavior is explicitly
incorporated. The classical MAPF problem deals with a group of agents that move in a shared
environment. This problem is inherently cooperative, since each agent has to arrive at a goal
location, without colliding with other agents in the group. However, in many real-world ap-
plications, agents that operate in a shared environment are often heterogeneous and may have
a different set of abilities and restrictions. Therefore, in the Co-MAPF framework, achieving
goals and completing tasks may not depend only on avoiding collisions between agents, but
also on actively coordinating their actions. Simply put, we may want agents not just to “not
interrupt” each other, but also help each other achieve their goals. We term this a truly coop-
erative setting. In this setting, a group of autonomous agents operate in a shared environment
and have to complete cooperative tasks while avoiding collisions with the other agents in the
group. To complete cooperative tasks, agents must collaborate and coordinate their high-level
decisions. This introduces a significant computational challenge on top of path planning and col-
lision avoidance. This extension naturally models many real-world applications, where groups
of agents are required to collaborate in order to complete a given task. To this end, we for-
malize the Co-MAPF problem and introduce Cooperative Conflict-Based Search (Co-CBS), a
CBS-based algorithm for solving the problem optimally for a wide set of Co-MAPF problems.
Co-CBS uses a cooperation-planning module integrated into CBS such that cooperation planning
is decoupled from path planning. We suggest two improvements to Co-CBS that significantly
improve its success rate. We also address the Task Assignment (TA) problem, which is NP-hard
in this context. We propose to formulate the TA problem as a Multi-Index Assignment Problem
(MIAP), use an off-the-shelf algorithm to solve it, and show how to integrate in into Co-CBS.
Finally, we present empirical results on several MAPF benchmarks demonstrating the properties
of several variants of Co-CBS.

1

2

Chapter 1

Introduction

Automated planning and scheduling, also denoted as AI planning, is a branch of artificial intel-
ligence and decision theory that concerns the realization of strategies or action sequences, for
execution by intelligent agents such as autonomous robots and unmanned vehicles. A planning
task is a search and optimization problem whose purpose is to synthesize an optimal plan. That
is, a sequence of actions which optimizes some objective criteria and leads an agent from its
initial state to a target state.

A multi-agent system (MAS) is a distributed system composed of multiple autonomous
intelligent agents, that work in a shared environment and carry out tasks to achieve goals. In
a fully-cooperative multi-agent system, all agents work towards achieving a common goal, and
affect each other actions and decisions. Their achievements are measured as a team using some
group objective.

Multi-agent planning (MAP) [Torreño et al., 2017] is the process of coordinating the decisions
and actions in a MAS. The main aspect in a cooperative MAP problem is coordination, i.e.,
ensuring that the actions of all agents result in a a jointly optimal plan for the group. This
problem is motivated by many real-world applications in a variety of domains, such as military
[Cil and Mala, 2010], logistics [Gebser et al., 2018], and search-and-rescue [Kitano and Tadokoro,
2001]. In these problems, agents must coordinate their decisions to maximize their (joint) team
value.

The Multi-Agent Path-Finding (MAPF) problem is a special and important type of multi-
agent planning. In MAPF [Stern et al., 2019], we consider a group of autonomous mobile agents
(or robots) that operate in a shared space. Each robot has a start location and a goal location it
needs to arrive at. The task is to find paths for each agent in a group, from its start to its goal
location, without colliding with each other. An example MAPF problem instance is presented
in Figure 1.1. In this example we have two robots, in light and dark blue colors, moving on a
4-connected grid with some obstacles (depicted with black squares). Each robot needs to arrive
at its corresponding flag. The task is to a plan a path for each robot to its goal, without colliding
with the other robot. The solution for this problem (i.e., a set of two paths), is shown using
blue dots.

While relevant to many real-world applications, such as warehouse automation [Wurman
et al., 2008], autonomous vehicles [Dresner and Stone, 2008; Švancara et al., 2019] and robotics
[Hönig et al., 2016], recent research in the field has focused on expanding the classical MAPF

3

Figure 1.1: An example MAPF problem and solution.

framework to fit more real-world applications [Ma et al., 2017a; Felner et al., 2017; Salzman and
Stern, 2020].

A main research direction towards the real-world applicability of MAPF is the problem of
lifelong MAPF, also known as the Multi-Agent Pickup and Delivery (MAPD) problem. In this
problem, a group of autonomous agents operate in a shared environment to complete a stream
of incoming tasks, each with start and goal locations, while avoiding collisions with each others
[Ma et al., 2017b; Liu et al., 2019]. A similar problem, studied by Ma et al. [Ma et al., 2016]
is the package-exchange robot-routing problem (PERR) where payload exchanges and transfers
are allowed, thus enabling the modelling of more general transportation problems.

The classical MAPF problem is inherently cooperative, since each agent has to arrive at
its goal without colliding with other agents. However, in many real-world applications, agents
that operate in a shared environment are often heterogeneous [Atzmon et al., 2020b] and may
have a different set of abilities and restrictions. Furthermore, some tasks may be too complex
for a single agent to complete on its own, and several agents of different types may have to
work together. The main goal of this research is to investigate problems involving such tasks.
More specifically, we are interested in a setting where agents have to coordinate their high-
level decisions and plans, while not colliding with each other. We term this a truly cooperative
setting. We wish to incorporate ideas from high-level multi-agent planning (for coordinating
their high-level plans) into low-level path-finding (for avoiding collisions with each other). We
focus on cases where high-level interactions between agents are sparse, and therefore can be
represented in a compact way. More specifically, interactions among agents can be represented
using constraints, such that collaborating agents are constrained to reach a specific interaction
state at a specific time. The agents then must find an optimal plan that meets the constraints.
This problem is investigated in a work [Revach et al., 2020] completed and published in the early
stages of my M.Sc. studies. The full paper describing this work is presented in Appendix A for
completeness.

To this end, we introduce the Cooperative Multi-Agent Path Finding (Co-MAPF) framework,
a MAPF extension, in which a group of agents collaborate towards completing a joint task. In the

4

Figure 1.2: Autonomous robots transport inventory pods in an automated warehouse. (Credit:
https://www.greyorange.com/)

Co-MAPF framework, achieving goals and completing tasks may not depend only on avoiding
collisions between agents, but also on actively coordinating their actions. Simply put, we may
want agents not just to “not interrupt” each other, but also help each other achieve their goals.

Our motivating problem is taken from the warehouse-automation domain [Wurman et al.,
2008]. In this problem, storage locations host inventory pods that hold goods of different kinds.
A large number of robots operate autonomously in the warehouse, picking up and carrying
inventory pods (see Figure 1.2 for illustration) to designated drop-off locations, where goods are
manually taken off the pods for packaging. The robots then carry the pods back to their location
in the warehouse. In this scenario, the robots’ main task is to transport the pods around the
warehouse, and we refer to robots executing such tasks as transfer units. Incorporating robots
to automate warehouses (such as those maintained by Amazon, Alibaba and more) has launched
significant research on MAPF problems during the last decade, both in industry and academia.
However, the problem is still far from being solved, as current solutions still assume a person
picking up objects from shelves in a warehouse. Research in a different, yet closely-related area,
has studied this exact problem—autonomous robotic arms capable of picking-up a specific item
from an inventory pod [Correll et al., 2016]. We refer to a moving robot with such arm as a
grasp unit. Our motivation in this research is to decouple the task of grasping an object and
transporting it in the warehouse. We thus present an improved warehouse scenario, where robots
of two types, grasp and transfer units, work together in coordination (for example, by scheduling
a meeting between them) to improve some optimization objective.

This motivating example is depicted in Figure 1.3. Two pairs of robots operate in a warehouse
– two grasp units and two transfer units. A grasp unit, depicted in red, is a mobile robot with a
robotic arm, capable of picking a specific item or box from a shelf in the warehouse. A transfer
unit, depicted in blue, is a light-weight, possibly cheaper mobile robot, that can carry items
and boxes and transport them around the warehouse. Grasp unit #1 arrived at the task start
location, i.e., next to the shelf. It will pick up the box and then drive to a meeting location

5

https://www.greyorange.com/

(marked with a yellow square) to transfer the box to transfer unit #1. The transfer unit has a
path (marked with blue arrows) to the meeting point, and from there to the task goal (the P
square), where the box will be picked by a human employee. The second pair of robots (#2 in
Figure 1.3) are at their meeting location. They occupy the same location by following a special
rendezvous protocol which allows them to safely transfer the box without colliding.

This improved scenario offers better flexibility and may significantly improve the warehouse
performance. Instead of moving around the whole inventory pod back and forth in the ware-
house, we can transport only the wanted item, by picking it up from the shelf using a robotic
arm. By doing so, we can significantly reduce the delivery time of a single package, and reduce
the number of actions needed by the robots, possibly achieving improved warehouse throughput
and latency. We still need of course to make sure that robots do not collide with each other.

Figure 1.3: An improved warehouse scenario, where robots of two types collaborate to complete
delivery tasks—the red robot, with a robotic arm, picks up a box from the shelf. Then the two
robots meet and the box is transferred to the blue robot, that transports the box to its picking
location. (Credit: https://www.elitzurbaryehuda.com/)

In this research, we suggest to incorporate a truly cooperative behavior to classical MAPF
using the notion of cooperative tasks, such that agents coordinate their high-level decisions in
the context of cooperative tasks, and avoid collisions in the low-level plans. Similar to (non-
cooperative) tasks defined in the MAPD literature [Ma et al., 2017b; Liu et al., 2019], cooperative
tasks are assigned to agents, rather than explicit goals. Agents are able to complete cooperative
tasks (formally defined in Chapter 3) only by coordinating their actions and goals with each
other.

In Chapter 3, we present the formulation of the Co-MAPF problem, define its input and
solution. The formulation is derived from the classical MAPF formulation [Stern et al., 2019],
which is also presented as an algorithmic background. In addition, we discuss differences and
further extensions to the Co-MAPF framework which can be used towards achieving more coop-

6

https://www.elitzurbaryehuda.com/

erative capabilities in a MAPF problem. In the suggested formulation, presented in Chapter 3,
there is more than one set of agents, possibly representing heterogeneous real-world agents, and
we specifically focus on the case of two sets of agents, of two different types. Agents’ high-level
interaction is restricted to the form of meetings. More specifically, agents have to schedule a
meeting location and time to complete a task. We also discuss other forms of agent interactions,
and generalizations to the suggested formulation. We state that besides the aforementioned
warehouse problem, more real-world problems can be modeled using the Co-MAPF framework,
such as the involvement of aerial robots in fulfilment centers [Shome, 2021], the truck-and-drone
“last-mile” delivery problem [Murray and Raj, 2020] and multi-drone delivery using transit
networks [Choudhury et al., 2020].

Based on the suggested formulation, we introduce (in Chapter 4) Cooperative Conflict-Based
Search (Co-CBS), an optimal three-level algorithm that is heavily based on two previously-
suggested optimal algorithms: the well-known Conflict-Based Search (CBS) [Sharon et al., 2015]
for solving a classical MAPF problem, and the Conflict-Based Search with Optimal Task Assign-
ment (CBS-TA) [Hönig et al., 2018] for solving the anonymous MAPF problem, where we also
need to assign goals (or tasks) to each agent. We also introduce two improvements to the basic
version of Co-CBS, one previously-suggested CBS improvement, and another which is unique
to Co-CBS and exploits special characteristics in the problem. Many more CBS extensions and
improvements exist, some of which can be immediately applied to Co-CBS, as we discuss in
Chapter 7. A theoretical analysis of Co-CBS is presented, where we define the notion of source-
connected Co-MAPF instances, and prove that Co-CBS is complete on these instances. We also
prove that Co-CBS is optimal on every solvable Co-MAPF instance.

In Chapter 5, we present an important extension to our suggested problem. More specifically,
we address the task assignment (TA) problem, in which tasks are not pre-assigned to agents,
but we also wish to determine which agents are paired together and which task is assigned to
them, such that the objective function is optimized. We show that the task assignment problem
for the Co-MAPF is equivalent to a well-known combinatorial optimization problem called the
multi-index assignment problem (MIAP), which is NP-hard. We suggest to use an off-the-shelf
solver and describe how to incorporate it into Co-CBS.

We present empirical results of running Co-CBS on several MAPF benchmarks. We show that
it solves nontrivial problem instances (detailed in Chapter 6), and that our two suggested Co-
CBS improvements significantly improve the algorithm’s performance. We also present empirical
results when also solving the task assignment problem. These results show that solving the task
assignment problem may significantly reduce the cost of the obtained solutions, and moreover,
it also improves the algorithm performance (in terms of run time).

Finally, in Chapter 7 we conclude the work and discuss some extensions and research direc-
tions. Specifically, we discuss possible improvements and suggestions for Co-CBS, some of which
include applying previously-suggested CBS improvements into Co-CBS. In addition, we suggest
several extensions for the Co-MAPF framework, towards making it more real-life applicable.

7

Chapter 2

Background and Related Work

The Co-MAPF framework introduced in this work is an extension of the classical multi-agent
path finding problem, which is a branch of the more general field of multi-agent planning. In
this research, we draw inspiration and build upon several fields of multi-agent planning and
multi-agent path finding. We also address the task-assignment problem, a well-known problem
in combinatorial optimization, that has also been studied in the context of MAPF. In this
chapter we provide a literature survey on most of the fields Co-MAPF relates to. We review
several papers and ideas this research is based upon. As the goal of this research is to extend
the MAPF framework, we also present recent work that also extend and generalize the MAPF
problem.

2.1 Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF) is a type of cooperative multi-agent planning, where the
task is to plan paths for a group of agents, where interactions between agents are restricted to
collision avoidance. Namely, each agent has to travel from a start location to a goal location
without colliding with other agents, and while optimizing some team objective function. MAPF
has many real-life applications, and has been researched extensively both in academia and
industry. MAPF has several definitions and assumptions, which are summarized in [Stern et al.,
2019]. Many algorithms have been proposed to solve the MAPF problem [Felner et al., 2017].
In this section, we present a survey of the Conflict-Based Search (CBS, [Sharon et al., 2015])
algorithm, a state-of-the-art optimal MAPF solver, as our research relies on it. CBS also has
many extensions and improvements, and we present some of the most important ones.

2.1.1 Conflict-Based Search (CBS)

CBS [Sharon et al., 2012a; 2015] is a complete and optimal algorithm for solving the multi-
agent path finding problem. It is based on the idea that agents’ interactions are restricted to
collision avoidance, and that collisions between agents are resolved by imposing constraints. CBS
is a two-level algorithm. At the high level, a search is performed on a tree based on conflicts
between agents, called the constraint tree (CT). Whenever a conflict (or collision) is found,
corresponding to two agents a1, a2 being at the same location v at the same time t, the CT node

8

is split into two new nodes, and a different constraint is added to each node, for each conflicting
agent. The first constraint forbidding a1 to be at location v at time t while the second forbidding
a2 to be at location v at time t. At the low level, a search is performed only for a single agent
at a time, while satisfying all the imposed constraints. In many cases this reformulation enables
CBS to examine fewer states than A* while still maintaining optimality. The performance of
CBS depends on the structure of the problem. In cases with bottlenecks CBS performs well, and
in open spaces CBS performs poorly. CBS outperforms other algorithms in cases where corridors
and bottlenecks are more dominant.

2.1.2 Optimal CBS Variants

Many variants to CBS exist, that enhance its search technique, while keeping the algorithm
optimal. We present some of the important optimal CBS variants.

Meta-Agent CBS (MA-CBS) [Sharon et al., 2012b]. MA-CBS is an optimal CBS variant
that focuses on cases where CBS’s run time is much slower than that of A*’s. The main idea
is to couple groups of agents into meta-agents if the number of internal conflicts between them
exceeds a given bound. MA-CBS acts as a framework that can run on top of any complete
MAPF solver. In MA-CBS the number of conflicts allowed at the high-level phase between any
pair of agents is bounded by a predefined parameter B. When the number of conflicts exceeds
B, the conflicting agents are merged into a meta-agent and then treated as a joint composite
agent by the low-level solver. By bounding the number of conflicts between any pair of agents,
the exponential worst-case of basic CBS is prevented.

Bypassing a conflict. Boyarski et al. [2015a] propose a bypassing (BP) mechanism to improve
the run time of CBS. When a conflict is found, the algorithm first attempts to bypass the conflict
by finding a path of the same cost that does not pass the conflict location at the conflict time.
This avoids the need to perform a split in the search tree and add new constraints. If no
bypass is found, the algorithm performs the split action and adding explicit constraints to avoid
the conflict. The authors propose two variants that search for a bypass. In the first one, the
algorithm peeks at either of the immediate children of the CT node, trying to adopt their
paths. The second bypass method generalizes the first, by searching the tree below the CT
node, considering only nodes with same cost, and trying to use their paths in the solution of the
current CT node.

The Improved CBS (ICBS) [Boyarski et al., 2015b]. ICBS builds upon the meta-agent
and bypass improvements and adds two new improvements. Each of these improvements is
strongly tied to one of the former improvements (MA and BP) as follows:

1. Merge and restart (MR). In MA-CBS, agents are merged locally at each node of the search
tree. Instead, when a decision to merge is made, the authors suggest to restart the search
from scratch, with the new merged meta-agent treated as a single agent for the entire
search tree.

9

2. Prioritizing conflicts (PC). MA-CBS (even with BP added) arbitrarily chooses on which
conflict to split the high-level constraint tree. Poor choices may increase the size of the
tree. To remedy this, ICBS prioritizes the conflicts according to three types: cardinal,
semi-cardinal and non-cardinal. Cardinal conflicts always cause an increase in the solution
cost, so ICBS chooses to split cardinal conflicts first. Additionally, bypasses to cardinal
conflicts cannot exist. Therefore, the optional BP improvement should only be applied for
semi-cardinal or non-cardinal conflicts.

All four enhancements to CBS (i.e., MA, BP, PC and MR) are optional and can be added
separately or in conjunction with the others, except for MR which is only relevant to MA-CBS.
ICBS combines them all into a coherent improved version of CBS.

Iterative-Deepening Conflict-Based Search (IDCBS) [Boyarski et al., 2020]. IDCBS
is a memory-bounded optimal variant of CBS that can be substantially faster than CBS due to
incremental methods that it uses when processing CBS nodes. IDCBS replaces the high-level
A*-like search of CBS with a search approach similar to ID A* [Korf, 1985], which is a search
algorithm for exponential domains that uses memory conservatively. First, IDCBS explores the
Conflict Tree (CT) using repeated depth-first iterations. Unlike A*, Depth-First Search (DFS)
only moves from a parent node to its child and back and such nodes have many similarities in
their content. Second, the authors identify six main components required to process a high-
level CBS node and show how each one can be improved using incremental data structures that
exploit similarities between parent nodes and their children. IDCBS is able to optimally solve
many more problem instances than CBS and the authors report substantial improvements in
search times even for problem instances which can be solved by a currently leading CBS variant.

2.1.3 Sub-optimal CBS Variants

CBS also have several sub-optimal variants. Barer et al. [2014] propose several CBS-based
unbounded and bounded sub-optimal MAPF solvers. The proposed solvers relax the high and/or
the low-level searches, allowing them to return a sub-optimal solution. Greedy-CBS (GCBS), is
a CBS-based MAPF solver designed for finding a (possibly sub optimal) solution as fast as
possible, by preferring to expand search nodes that are more likely to produce a valid solution
fast. Bounded CBS (BCBS) performs a focal search in both the low and high-level searches of
CBS. Focal search maintains two lists of nodes: Open and Focal. The Focal list contains
nodes with cost higher from the lowest-cost nodes in the Open list by some sub-optimality
factor, which can also be selected for expansion. This ensures that the returned solution is
within a given sub-optimality bound (which is the product of the bounds of the two search
levels). Enhanced CBS (ECBS) is a bounded sub-optimal MAPF solver that also uses a focal
search, but the high and low levels share a joint sub-optimality bound.

2.2 MAPF with Task Assignment

In MAPF with Task Assignment problem, the task is to first assign targets (or goals) to agents
and then plan collision-free paths for the agents to their targets in a way such that the objective

10

function is optimized. Ma and Koenig [2016] study the Task Assignment and Path Finding
(TAPF) problem for teams of agents. The agents are partitioned into teams, and each team has
the same number of unique targets (goal locations). Any agent in a team can be assigned to a
target of the team, and the agents in the same team are thus exchangeable. However, agents
in different teams are not exchangeable. The task is to assign all goals to agents (within their
teams) and plan collision-free paths, such that the makespan is minimized (i.e., the earliest time
all agents arrive at their targets).

The TAPF problem is a generalization of the classical MAPF problem where tasks (or goals)
are pre-assigned to agents, and the anonymous MAPF problem where we need to assign goals
to agents. When only one team exists in TAPF, we get the anonymous MAPF problem, and
when each team consists of exactly one agent, we get the classical (non-anonymous) MAPF
problem. The anonymous MAPF problem can be solved optimally in polynomial time using
max-flow algorithm on a time-expanded network [Yu and LaValle, 2012]. The non-anonymous
MAPF problem (where the assignments of agents to target is pre-determined), is NP-hard and
can be solved optimally using various algorithms, and CBS in particular.

Ma and Koenig [2016] propose the Conflict-Based Min-Cost-Flow (CBM), a complete and
optimal algorithm for solving the TAPF problem. CBM is a hierarchical algorithm that combines
ideas from anonymous and non-anonymous MAPF algorithms. It uses CBS on the high level
and a min-cost max-flow algorithm on a time-expanded network on the low level. In CBM,
vertex and edge constraints are defined on a specific team (rather than agent). On the high
level, CBM considers each team to be a meta-agent. It uses CBS to resolve collisions between
meta-agents, that is, agents in different teams. On the low level, CBM uses a polynomial-time
min-cost max-flow algorithm on a time-expanded network to assign all agents in a single team
to unique targets of the same team and plan paths for them that obey the constraints imposed
by the currently considered high-level node, and result in no collisions among the agents in the
team.

The Conflict-Based Search with Task Assignment (CBS-TA) [Hönig et al., 2018] is proposed
to solve the anonymous MAPF problem optimally for the sum-of-costs objective (i.e., the total
time steps it takes all agents to arrive at their targets). CBS-TA extends CBS to jointly optimize
task assignment and path planning. It operates on a search forest rather than a search tree, and
creates the new search trees on demand. The algorithm is complete and optimal and the authors
show that it outperforms methods that perform task assignment optimization and path planning
independently. In CBS-TA, each node in the constraint tree contains a specific assignment of
agents to goals and whether it is a root node (i.e., all nodes below the root node has the same
assignment). Root nodes are expanded with the next-best assignment and added to the open
list. The Hungarian Algorithm [Kuhn, 1955] is used to calculate the optimal assignment given a
two-dimensional cost matrix and Murty’s Algorithm [Murty, 1968] is used to generate the next
best assignments. In the formulation presented in this paper, there are N agents at different
start locations, and M potential goal locations, such that agents are permitted to have a set
of possible goals. The binary N ×M matrix A indicates whether an agent can be assigned to
a specified goal. It is possible to model the aforementioned TAPF problem by setting N = M

and matrix A according to the group assignment. CBS-TA can compute optimal solutions with

11

respect to the sum of costs, which can be more relevant in some scenarios (e.g. minimizing the
total energy usage of the team). It has also been shown that the makespan and sum-of-costs
objectives cannot be simultaneously optimized. The authors also propose ECBS-TA, a bounded
sub-optimal variant of CBS-TA, based on ECBS.

2.3 Multi-Agent Pickup and Delivery (MAPD)

The lifelong version of MAPF is called the Multi-Agent Pickup and Delivery (MAPD) problem.
In the MAPD problem, agents have to attend to a stream of delivery tasks in an online setting.
One agent has to be assigned to each delivery task. This agent has to first move to a given
pickup location and then to a given delivery location while avoiding collisions with other agents.

The MAPD problem requires both the assignment of agents to tasks in an online and lifelong
setting and the planning of collision-free paths. Since agents have to attend to a stream of
tasks, they cannot rest in their destination (delivery) location after they finish executing tasks.
Furthermore, in the online setting, tasks can enter the system at any time, therefore assigning
agents to tasks and path planning cannot be done in advance but rather needs to be done during
execution in real-time.

Ma et al. [2017b] formulate the MAPD problem and propose two algorithms to solve the
problem. More specifically, we are given a set of unexecuted tasks T , and in each time step, all
new tasks are added to T . Each task τi ∈ T has a pickup location si and a delivery location gi.
An agent is called free iff it is not currently executing any task, and occupied otherwise. A free
agent can be assigned to any task. When an agent arrives at a task pickup location, it starts
to execute the task, and the task is removed from the task set. An agent can be assigned to
a different task in the task set while it is still moving to the pickup location of the task it is
currently assigned to but it has first to finish executing the task after it has reached its pickup
location. When it reaches the delivery location, it finishes executing the task, which implies that
it becomes a free agent and is no longer assigned to this task. A free agent can be assigned to
any task in the task set. The objective is to finish executing each task as quickly as possible, that
is to minimize the average number of time steps, called service time, needed to finish executing
each task after it was added to the task set.

Two decoupled algorithms are proposed to solve this problem. The first is Token Passing
(TP). TP is based on an idea similar to Cooperative-A* [Silver, 2005]. It defines a token, which
is a synchronized shared block of memory that contains the current paths of all agents, task set,
and agent assignments. Any agent that has reached the end of its path in the token, requests
the token once per timestep. The system then sends the token to each agent that requests it,
one after the other. The agent with the token chooses a task from the task set such that no
path of other agents in the token ends in the pickup or delivery location of the task:

• If there is at least one such task, the agent selects the one with a lowest heuristic value
and plans collision-free path to pickup and then to delivery, and update the path in its
token.

• If there is no such task, then the agent does not assign itself to a task in the current
timestep. If the agent is not in the delivery location of a task in the task set, then it

12

updates its path in the token with the trivial path where it rests in its current location.
Otherwise, to avoid deadlocks, it plans a collision-free path to an endpoint such that the
delivery locations of all tasks in the task set are different from the chosen endpoint, and
no path of other agents in the token ends in the chosen endpoint.

Finally, the agent returns the token to the system and moves along its path in the token.
The second algorithm, Token Passing with Task Swaps (TPTS), is more effective than TP,

by allowing agents to swap tasks. The set of tasks now contains all unexecuted tasks, rather
than only all tasks that have no agents assigned. This means that an agent with the token can
assign itself not only to a task that has no agent assigned but also to a task that is already
assigned another agent as long as that agent is still moving to the pickup location of the task.

Liu et al. [2019] study an offline version of the MAPD version. In this setting, all tasks are
known a-priori but have a certain release time, i.e., the time the task becomes available and can
be assigned to an agent. The task assignment is determined by solving a Traveling Salesman
Problem (TSP) where each node represents either an agent or a task release time. The output
of solving the task assignment problem is a sequence of tasks for each agent, namely, the tasks
each agent is assigned to, and the order of execution. Two algorithms are proposed to solve
the offline MAPD problem. The first, TA-Prioritized, performs a prioritized planning. More
specifically, after solving the task assignment, it plans for all agents one after the other, choosing
the next agent whose path has the largest execution time. Once the chosen agent plan its path,
all agents after it plan collision-free paths. To avoid deadlocks, TA-Prioritized uses a “reserving
dummy path” mechanism. A dummy path of an agent is a path with minimal travel time to
the parking location of the agent. The second algorithm is called TA-Hybrid. It considers two
groups of agents for path planning and uses a different path-planning method for each group:

• New-task agents have to go from their current location to their delivery location, and
cannot swap goals. Planning is done with ICBS.

• Free agents have to go from their current location to the pickup locations of the next task
in their task sequence. Agents can swap pickup locations while moving. Planning is done
with a min-cost max-flow algorithm to perform anonymous MAPF-based path planning.

After the task assignments, TA-Hybrid iterates over time steps, and checks if agents arrived
at the delivery locations, and removes their task from the task sequence. Then it plans a path
for all new-task agents to their delivery locations. Then it plans for all free agents (in t = 0 all
agents are free) to their pickup locations. All agents then move one time step.

2.4 Extensions to Classical MAPF

Most MAPF-related work in recent years has focused on research directions that extended the
classical MAPF problem to fit more real-world applications. In this section we discuss some
of this work, as the main goal of this research is also to suggest an extensions to the classical
MAPF problem.

Recall that our motivation problem, presented in Chapter 1, includes delivering a package by
transferring it between two different robots. The problem of pickup and delivery with transfers

13

has already been studied in an online manner [Coltin and Veloso, 2014]. In this work, items
need to be delivered from a pickup location to a delivery location within a time window, and
robots are allowed to transfer items at arbitrary locations. Note that transfers are optional and
cannot be enforced (as opposed to our motivation problem). Each time new requests arrive, or
robots are stuck or delayed, the algorithm re-plans using an auction procedure, where it assigns
new items to robots based on their bid, and adds transfers by using special actions TransferSend
and TransferReceive. Several heuristics are used for the auction bids and transfers. Forcing the
timing constraints (of item windows and transfers) is done using a Simple Temporal Network
(STN). Collisions between robots are not addressed directly in the planning phase. Instead,
there may be delays in the execution of plans, which cause the algorithm to re-plan.

Ma et al. [2016] study the package-exchange robot-routing problem (PERR), where robots are
allowed to exchange payloads. PERR can be reduced to the integer multi-commodity network-
flow problem and solved optimally using integer linear programming. It can also be converted
to an adapted CBS where exchange operations (i.e., swapping conflicts) are allowed. The exper-
iments show that flow-based solvers scale better on instances with many robots, however, the
adapted CBS solver scale better on sparse grids with many bottlenecks. Note that in PERR,
payloads exchange and transfers can help avoid bottlenecks and reduce the makespan. However,
they cannot be enforced.

In the Multi-Agent Meeting (MAM) problem, the task is to find a meeting location for
multiple agents, as well as a path for each agent to that location. It may be solved while
considering conflicts between agents [Atzmon et al., 2021] or without [Atzmon et al., 2020a].
The goal is to minimize the makespan or sum of costs of all agents to the meeting location.
Atzmon et al. [2020a] introduce a complete and optimal algorithm, Multi-Directional Heuristic
Search (MM*) that finds the optimal meeting location under different cost functions and using
several heuristic functions. Atzmon et al. [2021] address the Conflict-Free Multi-Agent Meeting
(CF-MAM) problem, where the task is to find collision-free paths to the meeting location. Two
optimal algorithms are presented to solve this problem.

Finally, many more challenged and generalization to the MAPF problem are discussed in
several survey papers [Ma et al., 2017a; Felner et al., 2017; Salzman and Stern, 2020].

14

Chapter 3

Cooperative Multi-Agent Path
Finding (Co-MAPF)

3.1 Introduction

In this chapter we describe and formally define the Cooperative Multi-Agent Path Finding (Co-
MAPF) problem. The suggested formulation extends the classical MAPF formulation and adds
high-level interactions between agents via the notion of heterogeneous agents that work together
in collaboration, to complete cooperative tasks. More specifically, collaborating in the context
of cooperative tasks is restricted to the form of meetings.

We first describe and formulate the classical MAPF problem followed by a formulation of
our proposed Cooperative-MAPF (Co-MAPF) framework. We define the input for the problem,
valid solutions, and define the objective function used to measure valid solutions.

Finally, we define the notion of source-connected Co-MAPF instances, which will allow us to
check whether an instance is solvable in an efficient manner.

3.2 Classical Multi-Agent Path Finding (MAPF)

We first describe the classical MAPF problem in detail. Most of the material in this section is
based on [Sharon et al., 2015] and [Stern et al., 2019].

3.2.1 Problem input

The input to the classical MAPF problem is:

1. A graph G = (V,E) whose vertices V correspond to locations and whose edges E corre-
spond to connections between the locations that the agents can move along.

2. A set of k homogeneous agents A = {a1, . . . , ak}. Every agent ai has a unique start
vertex si ∈ V and a goal vertex gi ∈ V .

Time is discretized into time points {t0, t1, . . . }, such that at time point t0 agent ai is located
in location si.

15

3.2.2 Actions

In every time step, each agent is situated in one of the graph vertices and can perform a single
action. Each agent has two types of actions: move and wait.

i) A move action means that the agent moves from its current vertex v to an adjacent vertex v′

such that (v, v′) ∈ E.

ii) A wait action means that the agent stays in its current vertex another time step.

Given a sequence of single-agent actions, pi is called the plan or path of agent ai, such
that pi[t] is the location of agent ai at time step t and |pi| is the length of the path. We
denote P = {p1, . . . , pk} the set of paths, one for each agent.

3.2.3 MAPF conflicts

A conflict in a MAPF problem represents a collision between two single-agent plans. The
literature on classical MAPF includes several conflict definitions [Stern et al., 2019]. In this
work we focus on two types of conflicts:

i) A vertex conflict between agents occurs when two agents occupy the same vertex at the
same time. Formally, a vertex conflict between agents ai and aj exists iff there exists a
time step t such that pi[t] = pj [t].

ii) An edge conflict (sometimes called swapping conflict) between agents occurs when two
agents traverse the same edge from opposite sides (“swap positions”) at the same time
step. Formally, an edge conflict between agents ai and aj exists iff there exists a time
step t such that pi[t] = pj [t+ 1] and pi[t+ 1] = pj [t].

3.2.4 MAPF solution

A feasible (or valid) MAPF solution is a set of paths P = {p1, . . . , pk} such that pi is a path for
agent ai from vertex si to vertex gi and there are no conflicts between any two paths in P.

An optimal MAPF solution is a feasible set of paths P which optimizes some objective
function (specifically defined in the next paragraph).

3.2.5 Objective functions

Arguably, the most common objective functions used in classical MAPF to evaluate solutions
are makespan (MKSP) and sum-of-costs (SOC), both to be minimized.

• Makespan is defined as the number of time steps required for all agents to reach their
target. The makespan of a MAPF solution P is defined as: max1≤i≤k |pi|.

• Sum-of-costs is defined as the sum of time steps required by each agent to reach its goal.
The sum of costs of a MAPF solution P is defined as: ∑k

i=1 |pi|.

16

3.3 Formulating the Co-MAPF Problem

We wish to incorporate cooperative behavior into the classical MAPF problem. This is achieved
by defining heterogeneous agents that collaborate and work together on a cooperative task.
More specifically, we replace agent goals with a set of cooperative tasks, i.e., tasks that require
the cooperation and coordination of a group of agents in order to be completed. Here we limit
ourselves to cooperative tasks (simply referred to as tasks in the rest of this thesis) that require
pre-defined pairs of agents to meet. We discuss possible extensions in Chapter 7.

3.3.1 Problem input

We are given a graph G = (V,E), similar to the classical MAPF problem. In Co-MAPF, the set
of agents A consists of two distinguishable sets, i.e., A = A ∪ B. Each set includes k agents of
a specific type, namely A = {α1, . . . , αk} and B = {β1, . . . , βk} (a total of 2k agents). The two
types of agents may represent robots that differ in their traversal capabilities or possible actions
in different locations (for instance, picking up an object).

Each agent has a unique start location given by a function V0 : A→ V s.t.V0 (a) is the
location of agent a at time step 0, namely pi[0] = V0 (ai).

In Co-MAPF, agent goals are not given explicitly. Instead, we are given a set of cooperative
tasks T = {τ1, . . . , τk} s.t. each task τi is assigned to a pair of agents (αi, βi). In the context
of these tasks, we refer to αi and βi as the initiator and executor agents, respectively. Each
task τi ∈ T is defined by a start location si and a goal location gi.

An agent’s goal is then derived from its assigned task. The initiator agent initiates the task
by arriving at the task’s start location. The executor agent executes the task by arriving at
the task’s goal location. In between, both agent must meet for the task to be completed. More
specifically, in our setting, a task τi = (si, gi) for agents (αi, βi) is composed of the following
steps:

i) Moving the initiator agent from its start location to the task start location. Namely, αi

from V0 (αi) to si.

ii) Moving the initiator agent from the task start location to a so-called meeting at a specific
time. Namely, αi from si to mi = (vm

i , t
m
i) where vm

i ∈ V is the meeting location and tmi
is the meeting time step, both of which are computed by the algorithm (and not specified
by the task1).

iii) Moving the executor agent from its start location to the meeting location at the meeting
time. Namely, βi from V0 (αi) to vm

i at time tmi .

iv) Moving the executor agent from the meeting location to the task goal location. Namely, βi

from vm
i to gi.

Following these steps, the initiator agent has to plan a path from its start location to the
task start location and then to meet with the executor agent. The executor has to plan a path

1Note that a meeting mi is defined by its location and time. Thus, when referring to a meeting mi, we mean
both it location vm

i and time tm
i .

17

from its start location to first meet the initiator and then complete the task by planning a path
to the task’s goal location. For a visualization, see Figure 3.1.

Figure 3.1: The paths completing a single cooperative task. The initiator agent (in red) plans
a path from its start location (V0 (αi)) to the task start location (si, depicted with a green box)
and then to the meeting (vm

i , depicted with a purple handshake). The executor agent (in blue)
plans a path from its start location (V0 (βi)) to the meeting and then to the task goal location
(gi, depicted with a green flag). Note that in this example, the blue agent has to wait at the
meeting location several time steps, until the designated meeting time.

Note that a meeting (vm
i , t

m
i) is defined using a single vertex vm

i , which means that both
agents arrive at the same location at the same time, and this is not considered a collision in our
setting. This represents a scenario where the two robots meet following some special rendezvous
protocol (as depicted by robots #2 in Figure 1.2), allowing them to be at the same location
without colliding. However, we may also define a meeting using a pair of adjacent vertices,
i.e. vm

i,α and vm
i,β where each agent has its own meeting location, similar to [Revach et al., 2020].

This extension is discussed in Chapter 7.

3.3.2 Co-MAPF solution

A Co-MAPF solution is a set of path pairs P =
{

(pα
1 , p

β
1), . . . , (pα

k , p
β
k)
}

such that for each
pair 1 ≤ i ≤ k, pα

i , p
β
i start in V0 (αi) and V0 (βi), respectively. Path pα

i goes through si at some
time step ti, and both paths contain a meeting at vertex vm

i at the same time tmi s.t. ti ≤ tmi .
Finally, pα

i ends in vertex vm
i at time tmi and pβ

i ends in vertex gi. Namely, for each 1 ≤ i ≤ k,

pα
i =

V0 (αi) , . . . , si, . . . , v
m
i︸ ︷︷ ︸

tm
i time steps

 , (3.1)

pβ
i =

V0 (βi) , . . . , vm
i︸ ︷︷ ︸

tm
i time steps

, . . . , gi

 . (3.2)

Similarly to classical MAPF, in order for a solution to be feasible, there should be no conflicts
between the paths in P, with the exception that the paths of agents sharing a task intersect at

18

their meeting point.
An optimal Co-MAPF solution is a feasible set of path pairs P which optimizes some objective

function (specifically defined in next paragraph).

3.3.3 Co-MAPF objective functions

Similar to classical MAPF, we define the makespan (MKSP) and sum-of-costs (SOC) objective
functions in the cooperative case.

• The makespan of a Co-MAPF solution P =
{

(pα
1 , p

β
1), . . . , (pα

k , p
β
k)
}

is defined as max1≤i≤k |pβ
i |.

Note that we take maximum over paths of the executor agent only since ∀i, |pβ
i | ≥ |pα

i |.

• The sum-of-costs of P is defined as ∑1≤i≤k |pα
i |+ |p

β
i |. Wait actions are counted until

an agent finishes its plan (i.e., after the meeting for αi and after arriving at gi for βi).

In this work we focus on the SOC objective, which is, arguably, more natural for our setting—
it implicitly minimizes both the time it takes to complete a task, and the time the initiator
finishes its part in the task. We note that all results presented in this thesis can be applied to
the MKSP objective as well.

3.4 Source-Connected Co-MAPF Instances

An important characteristic of a MAPF instance is whether it is solvable, i.e., there exists a
feasible solution. Figure 3.2 shows a simple non-solvable MAPF instance with one agent. The
agent starts at s1 and has to arrive at g1, however, there does not exist a path from s1 to g1.

s1 g1

Figure 3.2: A non-solvable MAPF instance.

For classical MAPF, it is possible to check if an instance is solvable in polynomial time [Yu
and Rus, 2014]. In the Co-MAPF setting, given a set of meeting locations, we may decompose
the problem into two MAPF instances and check that both are solvable. However, Co-CBS also
searches for different meeting locations (and times), which means that agents’ (intermediate)
goals are determined during the search and not pre-defined. Therefore, to be able to efficiently
check if a Co-MAPF instance is solvable, we define the notion of source-connected instances. The
intuition behind the source-connected definition is that agents can rest (that is, stay forever) in
their start locations, such that they cannot block the execution of other tasks.

We denote a path from vertex u to vertex v in short by u→ v.

Definition 3.4.1 (source-connected instances). A source-connected Co-MAPF instance is an
instance in which for each task τi, the following paths exist: (i) V0 (αi) → si, (ii) V0 (βi) → si,
and (iii) si → gi, and none of them pass via an agent’s start location.

While still being general, source-connected instances are always solvable, and we can effi-
ciently check the condition in the above definition. Both these claims will be proved shortly.

19

We also state that Co-MAPF instances which are not source-connected, may still have a valid
solution. Moreover, our suggested algorithm (presented in the next chapter) will also solve most
non source-connected instances. Figure 3.3a illustrates these ideas.

g1

β1

s1 α1

(a)

α1 β1

s1 g1

(b)

Figure 3.3: A not source-connected (a) and source-connected (b) Co-MAPF instances. Black
squares are obstacles. In (a), the paths s1 → g1 and V0 (β1)→ s1 do not adhere to the condition
in Definition 3.4.1, as they pass an agent’s start location. In (b), all relevant paths do not pass
an agent’s start location. Nevertheless, both instances are solvable.

Claim 3.4.2. Checking if a Co-MAPF instance is source-connected can be done in polynomial
time in the graph size.

Proof. Denote V0 the set of all agents’ start locations, namely V0 = {V0 (αi)}ki=1 ∪ {V0 (βi)}ki=1.
Denote G′ a sub graph of G that contains only vertices in V \ V0. For each task τi ∈ T ,
given (si, gi) and (αi, βi), we can calculate the following paths in G′: V0 (αi)→ si, V0 (βi)→ si,
and si → gi. This can be done using any polynomial-time graph-search algorithm, such as
A* or Dijkstra to test if these paths exist. Therefore, by performing this test for each task
independently, we can determine that the instance is source-connected (if all paths exist in G′) or
conclude that it’s not (if at least one of the paths does not exist) in polynomial time in the graph
size. More specifically, by running Dijkstra’s algorithm for each task τi (from source vertex si), we
get that the complexity of checking the source-connected property isO (|T | · (|V |log|V |+ |E|)).■

Lemma 3.4.3. Every source-connected Co-MAPF instance is solvable.

Proof. Solving a source-connected Co-MAPF instance can be done by planning a solution for
each pair of agents independently from the other agents, with a meeting at the task start
location, at the earliest time possible for both agents. For each task τi ∈ T it is guaranteed by
the source-connected definition that the following paths exist and do not pass via other agents’
start location:

i) For agent αi, p1 from V0 (αi) to si.

ii) For agent βi, p2 from V0 (βi) to si, and p3 from si to gi.

We define the solution paths for this pair of agents to be: pα
i = p1 and pβ

i = p2 · p3 (where (·)
denotes a concatenation of the paths which is well-defined for the mentioned paths). We also
assume that the paths include wait actions at the starting points as necessary in order to
guarantee that the other agent can traverse its path successfully. We also require αi to return
to its starting location after meeting with βi, and βi to return to its starting location after

20

completing the task. This ensures that pα
j and pβ

j are clear paths for any other agents αj , βj so
the constructed solution is feasible. ■

To summarize, in this chapter we described and formally defined the Co-MAPF problem,
and introduced high-level agent interactions via meetings in the context of cooperative tasks.
In the next chapter we describe the approach for solving the problem, as well as our suggested
algorithm.

21

Chapter 4

Optimal Algorithm for Solving the
Co-MAPF Problem

In the previous chapter we described the cooperative model for the Co-MAPF problem, i.e.,
scheduling a meeting between two agents working together on a cooperative task. In this chapter
we discuss our approach for solving the Co-MAPF problem optimally, and present our suggested
Cooperative Conflict-Based Search (Co-CBS) algorithm. We provide a theoretical analysis of Co-
CBS and suggest two improvements to the basic algorithm.

To solve the Co-MAPF problem, besides finding collision-free shortest paths for agents, we
also need to determine the set of meetings, one meeting (location and time) for each task.
Meetings and tasks are coupled—once a meeting is set, agent paths are planned accordingly
to and from the meetings (see Figure 3.1 for illustration). The main challenge is therefore to
simultaneously search for meetings and paths, such that the total solution cost is minimized
(see Section 3.3.3). Using a centralized A*-based approach has two problems. First, it is not
straightforward to plan agents’ high-level interactions (i.e., determine a meeting location and
time for each task) since we need to coordinate agents’ actions over time. We need to account
for the total cost of completing a task given a meeting location and time, and an infinite number
of goal states exist using such an approach. Second, a centralized planner would suffer from a
run-time exponential blowup in the number of tasks, similar to the classical MAPF problem.

We may also consider a prioritized approach that would plan for each agent independently.
However, we still need to determine meeting locations and times, and such a planner may
potentially be very sub-optimal. Indeed, in Chapter 6 we observe this in an evaluation of such
a prioritized planner compared to our suggested approach.

To deal with the aforementioned challenges, we wish to decouple the search for a meeting
from the search of paths, and resolve conflicts in an efficient manner. We refer to the space of
all possible meeting locations and times as the meetings space and note that it is infinite, since
we can consider any time step to meet. Therefore, it is not possible to enumerate all sets of
meetings (one meeting for each task), and we need an efficient way to generate sets of meetings
to perform a best-first search in the meetings space.

In this chapter we present our suggested Cooperative Conflict-Based Search (Co-CBS) al-
gorithm based on the aforementioned ideas to solve the Co-MAPF problem. Co-CBS is based
on two previously-suggested algorithms: the well-known Conflict-Based Search (CBS) [Sharon

22

et al., 2015] for solving a classical MAPF problem and the Conflict-Based Search with Opti-
mal Task Assignment (CBS-TA) [Hönig et al., 2018] for solving the anonymous MAPF problem,
where we also need to assign goals (or tasks) to each agent. For clarity of exposition, we first
describe CBS, followed by a detailed description of Co-CBS.

4.1 Conflict-Based Search (CBS)

CBS [Sharon et al., 2015] is a state-of-the-art optimal algorithm for solving MAPF instances.
It is a two-level search algorithm, that implements two main ideas: planning for each agent
independently, and resolving conflicts by imposing constraints on single-agent paths. The high-
level performs a best-first search over a search tree called a constraint tree (CT). Each CT node
consists of a solution, its cost and a set of constraints. A solution is a set of paths, one for
each agent (see Section 3.2.4), from its start location to its goal location. Constraints is a set
of constraints for each agent. CBS finds conflicts in the solution and resolves them by imposing
constraints on agents. More specifically, CBS defines two types of constraints, corresponding to
the two types of conflicts (defined in Section 3.2.3):

i) A vertex constraint (a, v, t), forbidding agent a to be at location v at time step t.

ii) An edge constraint (a, u, v, t), forbidding agent a to cross edge (u, v) at time step t.

The low-level search constructs paths for each individual agent while satisfying the imposed con-
straints. CBS resolves conflicts by splitting a CT node and introducing an additional constraint
for each agent participating in the conflict at the lower level.

The search starts with a root node with an empty set of constraints. Paths are planned
for each agent independently, the solution is calculated and the root CT node is then inserted
into the Open list. At each iteration, a lowest-cost node from the Open list is selected for
expansion. During the expansion process, CBS looks for conflicts in the node’s solution. Once
a conflict is found, the CT is split, creating two new CT nodes, with a constraint added to
each, corresponding to the two agents involved in the conflict. Paths are planned for each CT
node, for the corresponding agent and while satisfying all the constraints. The cost of the newly
computed solution is calculated, and the new CT nodes are then inserted into the Open list.
The search is over when CBS expands a CT node from the Open list and finds that it has
no conflicts in its solution. It is then returned as the optimal solution. CBS is optimal and
complete. Full details can be found in [Sharon et al., 2015].

4.2 Cooperative Conflict-Based Search (Co-CBS)

We now continue with an overview of Co-CBS followed with lower-level details. Co-CBS is
outlined in Algorithm 4.1, with the main changes from CBS highlighted. An execution example
is described in Section 4.1 and depicted in Figure 4.2.

23

Algorithm 4.1 Cooperative Conflict-Based Search (Co-CBS)
1: Input: G,A,B,V0, T ▷ Co-MAPF problem instance, see Section 3.3.1
2: Returns: optimal path for each agent
3: for all τi ∈ T do ▷ using Algorithm 4.2 for each task
4: Ti ← compute_meetings_table(τi, αi, βi)
5: R = new node
6: R.constraints← ∅
7: R.meetings← get the initial set of minimal-cost set of meetings M∗

8: R.root← True
9: R.solution← plan_paths() ▷ to and from meetings

10: R.cost← compute_cost(R.solution)
11: insert R to OpenRoots
12: while Open not empty or OpenRoots not empty do
13: N ← lowest cost node from Open∪OpenRoots ▷ pop a node from the Open list
14: Validate the path in N until a conflict occurs
15: if N has no conflicts then
16: return N.solution ▷ N is goal
17: if N.root is True then
18: expand_root(N) ▷ using Algorithm 4.3
19: C ← first conflict (ai, aj , v, t) in N
20: for all agent ai in C do
21: A← new node
22: A.constraints← N.constraints+ (ai, v, t)
23: A.meetings← N.meetings
24: A.root← False
25: A.solution← N.solution
26: Update A.solution by invoking plan_paths(ai)
27: A.cost← compute_cost(A.solution)
28: Insert A to Open

4.2.1 Algorithm Overview

Co-CBS is a search algorithm based on CBS that considers the cooperative aspect of the problem.
More specifically, Co-CBS consists of three levels of search in three different spaces (similar
to [Hönig et al., 2018] and [Surynek, 2020]): (i) the meetings space, (ii) the conflicts space and
(iii) the paths space. The meetings space contains all possible combinations of meetings, one for
each task. We’ll refer to the three levels of search as the meetings level, conflicts level and paths
level, respectively.

Co-CBS simultaneously searches over all possible meetings and for each meeting, over all
possible paths. To perform this search in a systematic and efficient manner, we need to con-
sider an ordering of the meetings. Indeed, in Equation 4.1 we define a meeting’s cost which is
dependent both on the meeting’s location and time. To efficiently traverse the set of possible
meetings, we introduce the notion of a Meetings Table which stores for each meeting location the
currently-best meeting time. As we will see, this table will allow us to iterate over all meetings
in a best-first manner.

In contrast to CBS that constructs a single constraint tree (CT), Co-CBS creates a forest
of CTs, similar to [Hönig et al., 2018]. Each CT starts in a root node and corresponds to a

24

specific set of meetings (a specific meeting for each task). In Co-CBS, each CT node has two
additional fields (when compared to CBS): root specifies if the node is a root or a regular node
and meetings specifies the current set of meetings (one for each task) which is used during the
path-level search.

Co-CBS starts with a single root node, with the minimum-cost set of meetings (see Equa-
tion 4.4), while ignoring possible conflicts between agents. In each iteration, Co-CBS selects a
lowest-cost node from the Open list (either a root or regular node), in a best-first approach
similar to CBS. Whenever a root node is selected for expansion, in addition to splitting the tree
due to a conflict in its solution, Co-CBS also expands it in the meetings space by generating
the next best sets of meetings. Namely, new root nodes are created only on demand. For each
expanded node, given its set of meetings and constraints, the paths level computes a solution
by planning the different steps a task solution is composed of (see Section 3.3.1).

4.2.2 Computing the Meetings Table

We denote the cost of a meeting mi = (vm
i , t

m
i) by Ci(mi) ≜ Ci(vm

i , t
m
i). Ci is given for the SOC

objective, by

Ci(v, t) =
{

2 · t+ d (v, gi) , t ≥ t∗i (v)
∞, otherwise

, (4.1)

where t∗i (v) is the earliest possible meeting time at v for task τi, i.e., the earliest time both
assigned agents can arrive at v. Specifically, t∗i (v) is defined as

t∗i (v) = max {d (V0 (αi) , si) + d (si, v) , d (V0 (βi) , v)} , (4.2)

where d(u, v) is the length of the single-agent shortest path from u to v. If d(u, v) =∞, no such
path exists.

The first step of Co-CBS is to compute Ti, the meetings table for each task τi (lines 3-4
in Algorithm 4.1). The meetings table is a function Ti : V → R ∪ {∞} that returns for each
vertex v ∈ V the cost of completing task τi with a meeting in v at the currently-best time. Ti (v)
is initialized for each v ∈ V with Ti (v) = Ci(v, t∗i (v)), namely the earliest time possible for each
location. Each meetings table is stored as a heap which allows for update and getMin operations
in O(log |V |). These operations are used during the root node expansion which will be described
shortly.

We compute Ti (v) for all v ∈ V in polynomial time (in the size of the graph) using A*
and Dijkstra’s algorithm as described in Algorithm 4.2. For each task τi, we compute for every
node v ∈ V the paths to the agents’ start locations (V0 (αi) ,V0 (βi)), as well as task’s start (si)
and goal (gi) locations. This is done by running Dijkstra’s algorithm three times (from source
vertices si, gi,V0 (βi)). Then, for every node v ∈ V , we compute t∗i (v) the earliest possible time
meeting in v (using equation 4.2), and Ci(v, t∗i (v)) the cost of meeting at v at the earliest time
possible (using equation 4.1). All these values are stored in the table for later use.

25

Algorithm 4.2 Compute Meetings Table
1: Input: A Task τi and two assigned agents αi and βi

2: Returns: Ti, the meetings table for task τi

3: Compute d (V0 (αi) , si) ▷ initiator start to task start
4: Compute d (si, v) ,∀v ∈ V ▷ task start to all vertices
5: Compute d (V0 (βi) , v) , ∀v ∈ V ▷ executor start to all vertices
6: Compute d (v, gi) , ∀v ∈ V ▷ task goal to all vertices
7: for all v ∈ V do
8: Calculate t∗i (v) ▷ earliest meeting time in v
9: Calculate Ti (v) ▷ task cost with meeting at v

10: Store (v, t∗i (v) , Ti (v)) in table

4.2.3 Root Initialization

We define the cost of a set of meetings M = {m1, . . . ,mk} as follows:

C (M) =
k∑

i=1
Ci (vm

i , t
m
i). (4.3)

M∗ is a set of meetings that minimizes the problem objective while ignoring possible conflicts
between agents. Namely,

M∗ ∈ arg min
M

C (M). (4.4)

Co-CBS’s search starts with creating the initial CT root node with an empty set of con-
straints, and a minimal-cost set of meetings M∗, by choosing a lowest-cost meeting for each
task from the meeting tables (lines 5-8). Given M∗, the paths level is called to compute indi-
vidual paths for each agent (line 9). This is similar to CBS, except that in the path-level search
we plan for each task τi in parts: (i) for αi from V0 (αi) to si, and then from si to vm

i at time
tmi , and (ii) for βi from V0 (βi) to vm

i at time tmi and then to gi. Note that when planning for a
meeting, we should consider both the meeting location and time. The initial CT root node cost
is computed and it is inserted to the Open list (lines 10-11).

4.2.4 Node Selection

As long as there are nodes in the Open list (line 12), we follow CBS’s best-first search approach
and select a node with a lowest cost (line 13). If the Open list contains both root and regular
nodes with the same lowest cost, Co-CBS chooses to expand a regular node (to perform this in
practice, Co-CBS keeps root and regular nodes in two separate Open lists).

4.2.5 Root Node Expansion

After selecting a lowest-cost node N from the Open list, Co-CBS checks for conflicts in its
solution (line 14). If none are found, N.solution is returned as the optimal solution (lines 15-
16). Otherwise, if N is a root node, it is expanded to get its successors in the meetings space
(lines 17-18). The process of expanding a root node is described in Algorithm 4.3. Given the
current set of meetings (in the expanded root node) M = {m1, . . . ,mk}, Co-CBS generates up
to k new sets of meetings, one for each task. This is done in a non-decreasing manner, by

26

replacing one meeting mi ∈ M at a time, an idea similar to the Increasing Cost Tree Search
(ICTS) [Sharon et al., 2013] algorithm, thus creating k new root nodes.

Algorithm 4.3 Expand root
1: Input: Meetings tables of all tasks, a root node P
2: for all τi ∈ T do ▷ loop over all tasks
3: R = new node
4: R.constraints = ∅
5: R.meetings = P.meetings
6: R.meetings[τi] = get_next_meeting(Ti) ▷ change only τi’s meeting
7: R.root = True
8: Update R.solution by invoking plan_paths(αi, βi)
9: R.cost = compute_cost(R.solution)

10: insert R to OpenRoots

For each newly created root node, we replace only one meeting of one task, by selecting
the next-best meeting for this task. This process is described in Algorithm 4.4. To get the
next-best meeting for task τi, we have to search both for different locations and time steps in
the meetings space. The meetings table Ti of τi initially consists of meetings at each possible
location, at the earliest time possible. Each time Co-CBS invokes the get-next-meeting pro-
cedure for τi (line 6 in Algorithm 4.3), it returns the lowest-cost meeting mi = (vm

i , t
m
i) from

Ti. The table is then updated so that it holds the next lowest-cost meeting. This is done
by updating Ti (vm

i) = Ci (vm
i , t

m
i + 1). Namely, updating the cost of meeting at vm

i , but at
time tmi + 1 rather than tmi . The next time the get-next-meeting procedure is invoked, the
next best meeting will be returned by the table.

Algorithm 4.4 Get next meeting
1: Input: Meetings table Ti, current meeting of task τi, (vm

i , t
m
i)

2: Returns: The next-best meeting for task τi

3: tmi (vm
i) = tmi (vm

i) + 1 ▷ earliest meeting time in vm
i

4: Update Ti (v) ▷ set the new cost of meeting at v, namely at time tmi + 1
5: Return the lowest cost meeting in Ti

Subsequently, a new path is planned for the pair of agents whose meeting changed, the new
CT node cost is computed and it is inserted into the Open list.

4.2.6 Conflicts Resolution

The last part of the algorithm is almost identical to CBS: when expanding a node N (either root
or regular) Co-CBS splits its CT and creates a regular node for each agent by the first conflict
found (lines 19-28). These nodes has the same set of meetings as N (line 23).

4.3 Co-CBS Example

We now demonstrate the execution of Co-CBS on a problem instance, depicted in Figure 4.1. In
this problem we have two tasks, namely τ1 and τ2. Agents α1 and β1 execute τ1 from s1 to g1

and agents α2 and β2 execute τ2 from s2 to g2 (see Figure 4.1a).

27

α1

β1

α2

β2

s1 g1

s2

g2

0 1 2 3

0

1

2

3

(a)

α1

β1

α2

β2

s1 g1

s2

g2

m2

m1

0 1 2 3
(b)

α1

β1

α2

β2

s1 g1

s2

g2

m2

m1

0 1 2 3
(c)

α1

β1

α2

β2

s1 g1

s2

g2

m2

m1

0 1 2 3
(d)

Figure 4.1: A Co-MAPF problem instance (a) with two tasks, and three different sets of meetings
(one meeting for each task): M1 (b), M2 (c) and M3 (d). Agents α1 and β1 execute task τ1
from s1 to g1 and agents α2 and β2 execute task τ2 from s2 to g2.

Figure 4.2 shows the forest of constraint trees constructed during the execution of Co-CBS
of the instance depicted in Figure 4.1a. Root and regular nodes are denoted by R and N ,
respectively.

Co-CBS start by creating the initial root node R1, that contains the lowest-cost set of meet-
ings (see Equation 4.4)M1 ≜M∗. More specifically, M1 contains a meeting in (1, 0) at time 2
for task τ1 and a meeting in (1, 1) at time 3 for task τ2, as shown in Figure 4.1b. Paths are then
planned for all agents via these meetings, with cost 13, and R1 is inserted into the Open list.

In the first iteration, R1 is extracted from the Open list, as it is the only node. Co-CBS
validates its solution and finds a conflict at time t = 1. The CT is split into two new regular
nodes N1, N2 with the corresponding constraints. Paths are planned for both nodes, resulting
in cost of 13 for N1, and no solution for N2. N1 is inserted into the Open list, while N2 is
discarded. In addition, since R1 is a root node, it is also expanded to new root nodes R2 and
R3, with meeting sets M2,M3, shown in Figures 4.1c and 4.1d, respectively. Note that only
one meeting is changed at a time (compared to the parent root node R1)—m1 in R2 and m2 in
R3. Paths are planned for both nodes, resulting in a cost of 14 for both, which are then inserted
into the Open list.

Co-CBS continues to expand nodes in a best-first manner: N1 is chosen next for expansion,
creating N3, N4, both with no solution. In the next iterations, Co-CBS will expand R2 (to
R4, R5, N5, N6), then N5, and finally R3. Since R3 has no conflicts, its solution will be returned
as a feasible optimal solution, and the search is over.

4.4 Co-CBS Theoretical Analysis

We now provide a theoretical analysis of Co-CBS. More specifically, we discuss the conditions
under which Co-CBS is complete, and prove that it’s optimal on any solvable Co-MAPF instance.

4.4.1 Co-CBS Completeness

As discussed in Section 3.4, it is not possible to efficiently check whether a Co-MAPF instance is
solvable by decomposing it to classical MAPF instances. This is since agents’ goals are not pre-
defined and may change during the search for meeting locations. We therefore restrict our dis-

28

in at
in at

in at
in at

in at
in at

,

1 23

Figure 4.2: The search forest constructed during the execution of Co-CBS on the instance
depicted in Figure 4.1a.

cussion of Co-CBS completeness to source-connected Co-MAPF instances (see Definition 3.4.1).
By using the notion of source-connected Co-MAPF instances, we are able to guarantee Co-CBS’s
completeness while still solving a very wide and realistic set of problem instances. Investigating
Co-CBS’s completeness in the more general case is left for future research. For simplicity, we
also assume similar to [Ma et al., 2019], a disappear-at-target behavior [Stern et al., 2019]. More
specifically, the initiator agent disappears after the meeting, and the executor agent disappears
after completing the task (at the task goal location). Note that the following proofs still work
without this assumption. A more interesting scenario is where agents are assigned with new
tasks upon finishing their part, commonly known as the lifelong planning problem as discussed
in Chapter 7.

We wish to show that Co-CBS performs a best-first exhaustive search in the meetings space,
by generating sets of meetings with non-decreasing cost every time a root node is expanded. We
start by showing that the get-next-meeting procedure, described in Algorithm 4.4, generates
meetings (for a single task) with non-decreasing costs.

Lemma 4.4.1. The get-next-meeting procedure is exhaustively generating meetings of non-
decreasing-cost.

Proof. Consider Ti, the meetings table of task τi which is assigned to agents (αi, βi). Denote n
as the number of times get-next-meeting has been invoked. For n = 1, because of how Ti is
initialized, get-next-meeting returns the meeting location and time with lowest cost. Assume
by induction, that the n’th time get-next-meeting is invoked, it returns the n’th best meeting
in the location-time space. Denote this meeting location and time v̂n and t̂n, respectively.
Denote the total cost of the paths of αi and βi via this meeting ĉn. After the n’th invocation, Ti

is updated such that the meeting at v̂n is at time (t̂n + 1) and costs (ĉn + 2) (for the SOC
objective, since we add a time step for each agent). Ti is then sorted by meeting costs. This

29

means that in the (n+ 1)’th invocation of get-next-meeting, it will return the (n+ 1)’th best
meeting (with cost ≤ (ĉn + 2)). ■

We now show in the following lemma, that Co-CBS performs a best-first exhaustive search
in the meetings space.

Lemma 4.4.2. By expanding root nodes, Co-CBS is performing an exhaustive best-first search
in the meetings space.

Proof. We wish to prove that Co-CBS will eventually generate and examine all possible sets of
meetings, and that it will do so in a best-first approach. To do so we consider a general set of
meetings, and show that the number of sets of meetings generated before it is bounded. We also
show that all sets of meetings generated before our general set has cost lower or equal.

Denote m∗
i ≜ m0

i the lowest-cost meeting for task τi, m1
i the next best meeting, then m2

i ,
and so on. Namely,

Ci(m0
i) ≤ Ci(m1

i) ≤ Ci(m2
i) · · · . (4.5)

Let M′ =
{
mj1

1 , . . . ,m
jk
k

}
be a set of meetings, where mji

i is the ji’th best meeting for task τi.
We define the level of M′ as

ℓ
(
M′) =

k∑
i=1

ji. (4.6)

Note that due to (4.5), a set of meetings with a higher level have a higher or equal cost, namely

ℓ
(
M′) < ℓ

(
M′′)⇒ C(M′) ≤ C(M′′). (4.7)

Co-CBS starts by creating the initial root nodeR0, with the lowest-cost set of meetingsM∗ ≜M0,
where M0 contains the lowest-cost meeting for each task. Namely,

M0 =
{
m0

1, . . . ,m
0
k

}
.

Note that ℓ (M0) = 0.
When R0 is expanded, Co-CBS creates k new root nodes with k new sets of meetings, by

replacing one meeting in each new root node, with the next best meeting. Namely, R0 is
expanded to root nodes with sets of meetings{{

m1
1,m

0
2 . . . ,m

0
k

}
,
{
m0

1,m
1
2 . . . ,m

0
k

}
. . . ,

{
m0

1,m
0
2 . . . ,m

1
k

}}
.

In other words, Co-CBS expands all root nodes with sets of meetings that have level= 1. Gener-
ally speaking, when Co-CBS expands a root node with set of meetings with level ℓ′, it creates up
to k new root nodes with sets of meeting with level ℓ′ +1 (note that some of the sets of meetings
with level ℓ′ + 1 have already been created during a previous expansion). Furthermore, there
are exactly

(ℓ′+k−1
ℓ′

)
different sets of meeting with level ℓ′.

Now, consider a specific set of meetings M′ with cost C(M′) and level ℓ (M′). Denote
by ℓh the highest level of sets of meetings with cost ≤ C(M′). Namely, all sets of meeting with

30

level > ℓh have cost > C(M′). We know that there are exactly

ℓh∑
l=0

(
l + k − 1

l

)

sets of meetings with level≤ ℓh, and therefore at most that number of root nodes with cost≤ C(M′).
Since Co-CBS always selects a lowest-cost node for expansion, the number of root node expan-
sions before creating root node with M′ is bounded by ∑ℓh

l=0
(l+k−1

l

)
. This means that the

root node with sets of meeting M′ will eventually be created, after creating all possible sets of
meetings with lower cost. ■

We now continue to prove that Co-CBS is complete on source-connected instances (which
are always solvable).

Theorem 4.1 (Co-CBS completeness). Co-CBS will return a solution for any source-connected
Co-MAPF instance.

Proof. Given a source-connected Co-MAPF, by Lemma 3.4.3 we know that there exists a solution
for this instance. Denote the set of meetings in the solution by M = {(vm

1 , t
m
1) , . . . , (vm

k , t
m
k)}.

From Lemma 4.4.2 we know that during the search, Co-CBS will create a root node, denoted
by RM, whose set of meetings is M. There exists a feasible solution such that each pair of
agents (αi, βi) meet at (vm

i , t
m
i). By the completeness of CBS it is guaranteed that the search

from the CT root node RM will eventually find the solution. ■

We’ve shown that Co-CBS is complete for source-connected Co-MAPF instances. We state
however, that Co-CBS will also solve most instances where the source-connected property doesn’t
hold, albeit without a completeness guarantee.

4.4.2 Co-CBS Optimality

We show that Co-CBS returns an optimal solution for every solvable Co-MAPF instance, starting
with the following lemma.

Lemma 4.4.3. Let M be a set of meetings with cost C (M) = c and let N be a CT node with
cost larger than c. Co-CBS will generate a root node corresponding to M before expanding N .

Proof. Assume that there exists a set of meetingsM s.t. C(M) = c, that hasn’t been generated
yet. Assume by contradiction that Co-CBS expands a node N with a solution cost c′ > c. By
definition, the first generated set of meetings M∗ (line 7 in Algorithm 4.1) induces a solution
which minimizes the SOC objective function. This implies that the cost of completing all tasks in
the (possibly infeasible) solution induced byM∗ is less than or equal to c. The cost of completing
all tasks in the (possibly infeasible) solution induced byM is equal to c. From Lemma 4.4.2 we
know that each set of meetings generated between M∗ and M has a cost smaller or equal to c.
Furthermore, there must be at least one root node in the Open list consisting of one of these
meeting sets. Therefore, there exists a root node that hasn’t been expanded yet in the Open
list with a cost smaller than c′, in contradiction to Co-CBS’s best-first search approach which
chose node N with a larger cost for expansion. ■

31

Theorem 4.2 (Co-CBS optimality). Co-CBS returns an optimal solution for any solvable Co-
MAPF instance.

Proof. Assume that there exists an optimal solution with some cost c∗. Co-CBS performs a
CBS-like search on each generated CT, namely, it searches through a forest of constraint trees.
By Lemma 4.4.3 we get that the cost of each expanded root node of each CT constitutes a
lower-bound on c∗. From the optimality guarantees of CBS, we get that any node expanded in
each of those CTs (i.e., regular nodes) is also a lower bound on c∗. Due to Co-CBS’s best-first
approach, it won’t expand a node with a cost larger than c∗ before completing a search through
all possible CT nodes with cost c∗ (by expanding neither a root node nor a regular one). Since
there exists a solution with such cost, and the number of possible solutions with a specific cost
is finite, Co-CBS will eventually expand a node with an optimal and feasible solution and return
it. ■

4.5 Improved Co-CBS: Prioritizing Conflicts and Lazy Expan-
sion

In Section 4.2, we introduced the basic version of Co-CBS for solving the Co-MAPF problem
optimally. Generally speaking, Co-CBS creates a forest of constraint trees and runs CBS on
each tree. Therefore, we can apply previously-suggested CBS improvements to Co-CBS. One
such improvement that has been shown to significantly decrease CBS’s run-time is prioritizing
conflicts (PC) [Boyarski et al., 2015b]. In this section we present in detail the application of PC
to Co-CBS. More CBS improvements are discussed in Chapter 7. In addition, we introduce a
unique improvement for Co-CBS called Lazy Expansion (LE), which exploits special character-
istics of root nodes. Both improvements keep Co-CBS optimal, while introducing a significant
improvement in run time, as shown empirically in Chapter 6.

4.5.1 Prioritizing Conflicts (PC)

The Improved CBS (ICBS) algorithm [Boyarski et al., 2015b] introduced an enhancement to CBS
by defining rules dictating how to split the CT when encountering a conflict in the solution. In
particular, conflicts are divided into three types: cardinal, semi-cardinal and non-cardinal:

i) Cardinal conflict always causes an increase in the solution cost when adding its constraints
to any of the agents involved in the conflict.

ii) Semi-cardinal conflict causes an increase in the solution cost when adding its constraints
to one of the agents, leaving the cost of the second agent unchanged.

iii) Non-cardinal conflict does not cause an increase in the cost of neither agents.

When validating a solution of an expanded CT node, ICBS finds all conflicts in the solution
and classifies each conflict to one of the three types. ICBS chooses to split cardinal conflicts first.
If none exist, it chooses a semi-cardinal conflict, and finally a non-cardinal conflict. Cardinal
conflicts are identified by examining the width of a multi-value decision diagram (MDD) [Sharon

32

et al., 2013], which is constructed for each low-level path found. The MDD is a directed a-cyclic
graph which compactly stores all possible paths of a given cost c for a given agent, from its start
vertex to its goal vertex. An MDD of cost c consists of c layers, corresponding to c time steps.
The MDD of agent a of cost C is denoted MDDc

a.
Figure 4.3 shows an example MAPF environment [Boyarski et al., 2015b] with two agents,

and three MDDs: i) MDD2
1 is the MDD of agent 1 of cost 2, ii) MDD3

1 is the MDD of agent 1
of cost 3, and iii) MDD2

2 is the MDD of agent 2 of cost 2.

(a) A MAPF environment. (b) Multi-valued decision diagrams (MDDs).

Figure 4.3: An example MAPF environment with two agents (a) and several corresponding
MDDs (b).

Applying PC to Co-CBS is not straightforward, since an MDD stores paths from a start
vertex to a goal vertex, while in Co-MAPF paths are constrained to ensure cooperation between
agents. More specifically, in our Co-MAPF setting, each valid path has two phases. A path
either traverses the task start location on its way to the meeting (for the initiator agent), or
it traverses the meeting location (at a specific time) on its way to the goal (for the executor
agent). We therefore need to modify the way an MDD is constructed, and indeed we suggest a
method for efficiently doing so for both agents.

For the initiator agent, we must ensure it passes through the task’s start location. In other
words, we need to prune MDD nodes that are not part of any of the agent’s paths which pass the
task’s start location. We refer to such nodes as invalid nodes. Constructing an MDD efficiently
is done using two breadth-first searches–one forward and one backward (start to goal and vise
versa) [Sharon et al., 2013]. In order to efficiently prune invalid nodes, we follow the following
procedure: during the forward search, we mark MDD nodes corresponding to the task start
location and all their descendants as valid_forward. Similarly, during the backward search, we
mark these nodes and all their ancestors as valid_backward. Finally, all MDD nodes that are
not marked with either flags are invalid and therefore pruned.

For a visualization, consider the Co-MAPF instance depicted in Figure 4.4a, with only one
initiator agent. The meeting is at location F at time step 3, and the agent has to pass via the
task start location at C on its way to the meeting. Figure 4.4b shows it corresponding MDD
(of cost 3). Location E at time step 2 is invalid and is therefore pruned. Notice that being at
location E at time step 2 makes it impossible for the agent to arrive at its meeting after passing
the task start location.

33

(a) A Co-MAPF environment. (b) Multi-valued decision diagram (MDD) with one invalid
node.

Figure 4.4: An example Co-MAPF environment with one initiator agent (a) and its MDD of
cost 3. (b).

For the executor agent, constructing the MDD requires only slight changes. We need to
constrain the agent to be at the meeting’s location at the meeting’s time. We simply do it by
eliminating all other nodes from the MDD layer corresponds to the meeting time during the
forward pass in the MDD construction.

4.5.2 Lazy Expansion (LE) of Root Nodes

Co-CBS searches the meetings space by creating root nodes, each corresponding to a unique set
of meetings. Note that since no constraints are imposed on paths of root nodes, their cost is
given as an aggregation of their meeting costs. Namely, for each root node Ri, with a set of
meetings Mi,

Ri.cost = C(Mi). (4.8)

Furthermore, meeting costs are computed a-priori during the construction of meeting tables (see
Section 4.2.2). This means that when a root node is expanded, and new root nodes are created,
they can immediately be inserted into the Open list without computing their low-level paths,
which is the most time-consuming step during the expansion process. The low-level paths will
be computed only when these root nodes are extracted from the Open list. We term this Lazy
Expansion (LE) of root nodes.

Each time a root node is expanded, it creates k new root nodes by replacing the meeting
of each of the tasks. We emphasize that while generating those nodes is mandatory in order to
guarantee optimality, most of them won’t be expanded. Thus, the run-time saved by LE can be
significant.

34

Chapter 5

Task Assignment for Cooperative
MAPF

In our suggested Co-MAPF formulation, presented in Chapter 3, we assumed that tasks are
pre-assigned to agents. Namely, each task τi ∈ T is assigned to a pair of agents (αi, βi), and this
is a part of the input to the Co-MAPF problem. However, since the solution cost is measured
in total time steps to complete all tasks, determining which agents execute which task may have
a dramatic impact on the cost. Therefore, in this chapter we relax this assumption and address
the Task Assignment (TA) problem in the context of the Co-MAPF setting.

In the classical MAPF framework, the Task Assignment and Path Finding (TAPF) problem
deals with assigning agents to goals, as well as finding conflict-free paths to agents. This problem
is also known as the anonymous MAPF problem and can be solved in polynomial time for the
makespan objective [Yu and LaValle, 2012]. For the sum-of-costs objective, the Conflict-Based
Search with Task Assignment (CBS-TA) [Hönig et al., 2018] has been previously suggested. CBS-
TA extends CBS by simultaneously searching over all possible assignments. The task assignment
problem in the MAPF context is two dimensional. Informally speaking, given a k × k cost
matrix C = (cij), we have to select k elements of C, so that there is exactly one element in each
row and one in each column, and the sum of corresponding costs is minimized.

The task assignment problem in the Co-MAPF context is three dimensional: for each task τi

we need to assign a specific initiator agent as well as an executor agent. This problem is
equivalent to the Multi-Index Assignment Problem (MIAP) problem, and more specifically the
axial 3-index assignment problem, which is NP-hard in the general case [Karp, 1972]. In this
problem we are given a k × k × k cost matrix C = (cijl), and we have to select k elements of C,
so that there is exactly one element in each two-dimensional face (in the three orientations), and
the sum of the corresponding costs is minimized.

In this chapter we address the TA problem in the Co-MAPF context and formulate it as
an axial 3-index assignment problem. We define the global cooperation cost matrix containing
the total cost of all possible combinations of agents and tasks, and without considering possible
conflicts between agents. Given the global cooperation cost matrix, we propose to use an off-
the-shelf approximate solver to solve the task assignment problem.

We then wish to solve a more complete version of the Co-MAPF problem, where we also need
to assign agents to tasks. More specifically, we need to (i) pair initiator agents with executor

35

agents and assign a task to each pair, (ii) determine meetings for each pair, and (iii) find conflict-
free paths, such that the total cost is minimized. We suggest two possible approaches to solve
the task assignment as a part of Co-CBS, i.e., (i) a single-shot approach where we find a single
(approximately) optimal assignment, and then solve the induced Co-MAPF problem as before,
and (ii) a full-search approach where we search over the space of assignments during the search
for meetings and paths.

To measure the performance of our suggest Co-CBS with task assignment and evaluate the
efficiency of the off-the-shelf assignment algorithm, we also suggest a fast greedy-assignment
algorithm (described in Section 5.4) to be used with Co-CBS in the single-shot approach. In the
next chapter, we present an empirical evaluation which, among others, compares the different
approaches to solving the TA problem.

5.1 Assignment Problems

5.1.1 Two-Dimensional Assignment Problems

The task assignment problem in the classical MAPF problem is a two-dimensional assignment
problem. This problem is known as the Linear Assignment Problem [Burkard et al., 2009], which
can formulated as a constrained optimization problem. More specifically, by introducing binary
matrix X = (xij) such that

xij =
{

1, if row i is assigned to column j

0, otherwise
, (5.1)

the linear assignment problem can be modeled as:

min
xij

k∑
i=1

k∑
j=1

cijxij , (5.2)

subject to

k∑
j=1

xij = 1; i = 1, 2, . . . , k,

k∑
i=1

xij = 1; j = 1, 2, . . . , k,

xij ∈ {0, 1} ; i, j = 1, 2, . . . , k.

The linear assignment problem can be solved optimally in polynomial time using The Hun-
garian Algorithm [Kuhn, 1955]. CBS-TA [Hönig et al., 2018] uses an extension to the Hungarian
algorithm, called Murty’s algorithm [Murty, 1968] that can find the m−best assignments, and
generate assignments with non-decreasing costs.

36

5.1.2 The Multi-Index Assignment Problem and the Axial 3-Index Assign-
ment Problem

Task assignment for Co-MAPF can be formulated as a special case of the axial three-dimensional
assignment problem [Spieksma, 2000], where the number of elements is the same on all dimen-
sions. We are given a k × k × k cost matrix C = (cijl), and we want to select k elements of C, so
that there is exactly one element in each two-dimensional face (in the three orientations), and
the sum of the corresponding costs is minimized. This problem can be formulated as follows:

min
xijl

k∑
i=1

k∑
j=1

k∑
l=1
cijlxijl, (5.3)

subject to

k∑
j=1

k∑
l=1

xijl = 1; i = 1, 2, . . . , k,

k∑
i=1

k∑
l=1

xijl = 1; j = 1, 2, . . . , k,

k∑
i=1

k∑
j=1

xijl = 1; l = 1, 2, . . . , k,

xijl ∈ {0, 1} ; i, j, l = 1, 2, . . . , k.

The axial three-dimensional assignment problem is a special case of the more general multi-
index assignment problem (MIAP), also known as the S-dimensional (S-D) assignment problem,
which can be formulated as follows:

min
xi1i2...iS

n1∑
i1=1

n2∑
i2=1
· · ·

nS∑
iS=1

ci1i2...iSxi1i2...iS , (5.4)

subject to

n2∑
i2=1
· · ·

nS∑
iS=1

xi1i2...iS = 1; i1 = 1, 2, . . . , n1,

n1∑
i1=1
· · ·

nS∑
iS=1

xi1i2...iS = 1; i2 = 1, 2, . . . , n2,

...
n1∑

i1=1
· · ·

nS−1∑
iS−1=1

xi1i2...iS = 1; iS = 1, 2, . . . , nS ,

xi1i2...iS ∈ {0, 1} ; i1, i2, . . . iS = 1, 2, . . . , nS

We also present the MIAP formulation since the algorithm used to solve the three-dimensional
problem (presented in the next section) also solves the S-D problem. This means that our
suggested approach for solving the task assignment problem can be extended to solve a more

37

general version of Co-MAPF, where more than two agents work together on a single task. This
generalization is discussed in Chapter 7.

5.1.3 Approximating the m-Best Solutions

To solve the 3-D assignment problem, we use an off-the-shelf algorithm [Deb et al., 1997; Popp
et al., 2001], originally used in the field of multi-target tracking. Generally speaking, it uses a
Lagrange Relaxation technique to approximate the optimal assignment [Deb et al., 1997], and
then a variation of Murty’s algorithm [Murty, 1968], to approximate the m-best assignments.
The number of desired assignments m may affect the approximation accuracy, as a larger m value
can yield lower-cost (i.e., better) assignments. For more details please refer to [Popp et al., 2001].
We’ll refer to the algorithm as compute_assignments(C,m) where C is the k × k × k cost matrix
and m is the number of wanted assignments.

5.2 Cooperative Task Assignment as a 3-D Assignment Problem

5.2.1 The Global Cooperation Cost Matrix

We start by defining several notations. An assignment for task τi, is a tuple

⟨τi, αj , βl⟩ , (5.5)

such that initiator agent αj and executor agent βl are working together on task τi. We denote
an assignment in short by ϕijl = ⟨τi, αj , βl⟩. The cost of assignment ϕijl, denoted cijl, is defined
as the cost of completing task τi by agents αj and βl via the lowest-cost meeting (i.e., the
lowest-cost vertex when using the earliest possible meeting time for each vertex). We denote
this meeting by m∗

ijl and calculate its costs using

cijl = min
v
Ci

(
v, t∗ijl (v)

)
=︸︷︷︸

Eq. 4.1

{
2 · t+ d (v, gi) , t ≥ t∗ijl (v)

∞, otherwise
, (5.6)

where
t∗ijl (v) = max {d (V0 (αj) , si) + d (si, v) , d (V0 (βl) , v)} . (5.7)

Note that this cost is calculated without considering possible conflicts between agents. Therefore,
the cost of a given assignment (of a single task) is a lower bound of the real cost using conflict-free
paths.

Φ is a set of assignments, one for each task, namely Φ = {ϕ1j1l1 , . . . , ϕkjklk}, such that ϕijili

means assigning task τi to agents αji and βli . The cost of a set of assignments is the sum of
costs of all assignments, namely

cost(Φ) =
k∑

i=1
cijili . (5.8)

The cost of the set of assignments is a lower bound of the real solution cost (i.e., the sum of
costs of all agents), in which we consider conflict-free paths.

38

The global cooperation cost matrix is a matrix

C : T × A× B → R (5.9)

such that C (τi, αj , βl) = cijl. Matrix C has k3 entries, and for each entry, we need to compute
a Meetings Table (i.e., find the optimal meeting) for each task by running Dijkstra three times.
Thus, computing C is of time complexity

O
(
k3 · |T | · (|V |log|V |+ |E|)

)
= O

(
k4 · (|V |log|V |+ |E|)

)
. (5.10)

However, in the global cooperation matrix we need to account only for the best meeting (for
each possible assignment), i.e., a meeting at a specific location at the earliest time possible. This
means that the calculation can be decoupled between agents. Namely, we can run Dijkstra for
each task independently to find paths to all the vertices in the graph, and then iterate on all
possible assignments and for each one on all possible vertices by using Equations 5.6 and 5.7.
Overall, we get a time complexity of

O (k · (|V |log|V |+ |E|)) +O
(
k3 · |V |

)
(5.11)

for computing the global cooperation cost matrix. The first term is running 3 times Dijkstra’s
algorithm for each task (i.e., from the task start and goal locations, and from the executor agent
start location). The second term is for checking all possible meeting locations for each possible
assignment.

Note that while there are k3 different combinations of agents and tasks, for the 3-D problem
there are (k!)2 different sets of assignments, i.e., possible solutions to Equation 5.3. It is therefore
not feasible to find the optimal set of assignments in a brute-force manner for large values of k.

5.3 Cooperative Conflict-Based Search with Task Assignment

In this section we describe two possible approaches to incorporate the assignment algorithm
(described in Section 5.1.3) into Co-CBS for solving the Co-MAPF problem with task assign-
ment. Both approaches use the global cooperation cost matrix C (described in Section 5.2.1) and
compute_assignments(C,m) (described in Section 5.1.3) to calculate assignments. More specifi-
cally, the output of compute_assignments(C,m) is a vector of sets of assignments {Φ0, . . . ,Φm},
ordered by cost, namely

cost(Φ0) ≤ cost(Φ1) ≤ · · · ≤ cost(Φm). (5.12)

5.3.1 Single-Shot Task Assignment (Single-TA)

The first approach for solving Co-MAPF with TA is straightforward: approximate the opti-
mal assignment given C and solve the induced Co-MAPF problem with Co-CBS. Note that
when computing the (approximate) optimal assignments, we may use different values of m,
to get the m-best assignments and then select the lowest-cost assignment. Namely, we com-
pute {Φ0, . . . ,Φm} and use only Φ0.

39

5.3.2 Full Task-Assignment Search (Full-TA)

Rather than using a single assignment, we may also search the assignments space (i.e., the space
of all possible assignments) in a best-first manner, similarly to CBS-TA [Hönig et al., 2018].
Since Co-CBS already searches over a forest of CTs, Co-CBS with Full-TA searches over a forest
of forests. Namely, for each assignment it constructs a forest of CTs and performs a Co-CBS
search. For a given set of assignments Φ = {ϕ1j1l1 , . . . , ϕkjklk} we denoteM∗ (Φ) as the base set
of meetings, namely the lowest cost meeting of each assignment:

M∗ (Φ) =
{
m∗

1j1l1 , . . . ,m
∗
kjklk

}
. (5.13)

We then define a base root node as a Co-CBS root node with the lowest-cost set of meet-
ings M∗ (Φ) for a specific assignment. The size of the assignments space is determined by m,
which is given as an input to the algorithm. Given m, Co-CBS with Full-TA calculates the
(approximate) m-best assignments {Φ0, . . . ,Φm}, which are stored in a non-decreasing order.
Each CT node has an additional field assignment, which specifies a set of assignments, one for
each task. The first generated root node R0 is a base root node with the lowest-cost assign-
ment found, and the corresponding lowest-cost set of meetings, namely R0.assignment = Φ0

and R0.meetings =M∗(Φ0). Every time a base root node is selected for expansion, in addition
to creating regular nodes (due to a conflict) and root nodes (with the next best sets of meet-
ings), we also create a new base root node with the next best assignment. This is described in
Algorithm 5.1, with the changes from the expand_root procedure (described in Algorithm 4.3)
highlighted. Since the size of the assignments space is pre-determined by m, Co-CBS with Full-
TA only creates up to m base root nodes (corresponding to m sets of assignments). Therefore,
when selecting for expansion the base root node with the last set of assignments Φm, no new
base root nodes are created (lines 3-4 in Algorithm 5.1). Otherwise, we create a new base root
node with the set of assignments and its corresponding lowest-cost set of meetings (lines 7-8),
and plan new paths for all agents, since the assignment has changed (line 10). When creating
new root nodes with different sets of meetings, we use the same assignment as the parent node
(line 16).

Note that the parameter m defines the size of the assignments space. Namely, it may affect
both the solution quality and run time. In our empirical evaluation, presented in the next
chapter, we show results for different m values.

5.4 Greedy Assignment Approach

Computing assignments using the compute_assignments(C,m) algorithm presented in Sec-
tion 5.1.3 requires the computation of the global cooperation cost matrix, which can be com-
putationally expensive for large values of k (see Section 5.2.1). Therefore, to evaluate the
improvement achieved using the assignment algorithm, we also propose a greedy-assignment
approach, that would be sub-optimal in terms of cost, but much faster to compute.

The greedy approach exploits the fact that in the definition of the meeting (and assignment)
cost (Equations 5.6 and 5.7), the two agents are loosely coupled only via the meeting time. It

40

Algorithm 5.1 Expand base root
1: Input: {Φ0, . . . ,Φm}, Meetings tables, a root node P with P.assignment = Φj

2: if P is base root then ▷ namely, P.meetings =M∗(Φj)
3: if j = m then ▷ no more sets of assignments exist
4: break
5: Q = new node
6: Q.constraints = ∅
7: Q.assignment = Φj+1
8: Q.meetings =M∗(Φj+1) ▷ lowest-cost set of meetings for new set of assignments
9: Q.root = True

10: Q.solution = plan_paths() ▷ plan all paths since assignments changed
11: Q.cost = compute_cost(Q.solution)
12: insert Q to OpenRoots
13: for all τi ∈ T do ▷ loop over all tasks
14: R = new node
15: R.constraints = ∅
16: R.assignment = P.assignment ▷ new root nodes has the same assignments as P
17: R.meetings = P.meetings
18: R.meetings[τi] = get_next_meeting(Ti) ▷ change only τi’s meeting
19: R.root = True
20: Update R.solution by invoking plan_paths(αi, βi)
21: R.cost = compute_cost(R.solution)
22: insert R to OpenRoots

is therefore reasonable to select an agent of each type for each task independently. Thus, the
greedy approach loops over all tasks, and for each task computes the shortest path for each
agent (without considering the other agents), and selects the closest initiator agent, and then
the closest executor agent, out of all agents that haven’t been selected yet. This approach is
depicted in Algorithm 5.2.

In our empirical evaluation, presented in the next chapter, we use the greedy-assignment
approach with Co-CBS in the single-shot approach (see Section 5.3.1).

To summarize, in this chapter we addressed the task assignment (TA) problem in the context
of the Co-MAPF framework. We showed how to formulate it as a multi-index assignment
problem and proposed to use and off-the-shelf approximate algorithm by incorporating it into
Co-CBS in two different ways. We’ve also suggested a greedy assignment algorithm, which will
be used as a baseline in our empirical evaluation, presented in the next chapter. We haven’t
discussed the theoretical properties and implications of solving the TA problem, in terms of
solution optimality and run time. We leave this discussion for future work.

41

Algorithm 5.2 Greedy Cooperative Task Assignment
1: assignedα = {1, . . . , k} ▷ initialize array for assigned initiator agents
2: assignedβ = {1, . . . , k} ▷ initialize array for assigned executor agents
3: for all τi in T do
4: Reset dα and dβ

5: for all αj in A do
6: dα[j] = d∗ (si,V0 (αj)) ▷ shortest path from agent αj start to task τi start location
7: for all βj in B do
8: dβ[j] = d∗ (si,V0 (βj)) ▷ shortest path from agent βj start to task τi start location
9: closestα = arg min

j∈assignedα

dα

10: closestβ = arg min
j∈assignedβ

dβ

11: Remove closestα from assignedα

12: Remove closestβ from assignedβ

13: Assign τi to (closestα, closestβ)

42

Chapter 6

Experimental Evaluation

In previous chapters, we introduced the Co-MAPF framework and suggested the Co-CBS al-
gorithm for solving Co-MAPF problem instances. To the best of our knowledge, there does
not exist an off-the-shelf optimal solver for MAPF problems involving cooperative behavior in
the form introduced in this work. Therefore, it is not possible to measure the performance of
Co-CBS against an off-the-shelf algorithm. Moreover, in Chapter 4, we’ve discussed some of
the difficulties that rise when attempting to solve the Co-MAPF problem using a centralized
A*-based implementation. An attempt to solve Co-MAPF using such implementation would
yield similar results as solving classical MAPF problem using A* [Sharon et al., 2015], due to
their similar search approach and conflict-resolution mechanism.

We do however wish to measure the quality of Co-CBS in this chapter. We achieve that
by performing two different experimental evaluations. First, we present the results of running
Co-CBS on standard MAPF benchmarks [Stern et al., 2019; Sturtevant, 2012]. We compare
the performance of the basic version of Co-CBS as well as with the suggested improvements
(described in Section 4.5). We demonstrate the scalability of Co-CBS and discuss the effect of
adding cooperative behavior on the performance. Second, we compare Co-CBS with a baseline
prioritized planning algorithm. The baseline algorithm plans for each agent independently,
considering the paths of previous agents, and using the optimal meeting location. Thus, it runs
very fast, albeit it is sub-optimal.

Finally, we perform an evaluation of solving the Co-MAPF problem with task assignment,
comparing the different approaches discussed in Chapter 5.

The empirical evaluation shows that Co-CBS solves non-trivial Co-MAPF instances on stan-
dard MAPF benchmarks, and that our two suggested improvements significantly improve the
algorithm’s performance. We also show that also solving the task assignment problem may
dramatically improve the solution cost, as well the algorithm’s performance.

6.1 Setup and Benchmarks

Co-CBS is implemented in C++ based on the implementation of Li et al. [Li et al., 2021]. The
source code is available at https://github.com/CRL-Technion/Cooperative-MAPF. All simula-
tions were performed on an Intel Xeon Platinum 8000 @ 3.1Ghz machine with 32.0 GB RAM.

We used four benchmark environments for our empirical evaluation. Three standard MAPF

43

https://github.com/CRL-Technion/Cooperative-MAPF

benchmarks [Stern et al., 2019; Sturtevant, 2012], and a custom small warehouse environment
we’ve created for the evaluation. The benchmarks are depicted in Figure 6.1 and described in
Table 6.1. For each benchmark we specify the size of the grid, as well as the number of free
(non-obstacle) cells (i.e., the number of vertices in the graph). We also state the ratio between
the number of free cells and total cells, which is a (crude) measurement indicating how “sparse”
the environment is1.

(a) den312d (b) random-32-32-20

(c) warehouse-10-20-10-2-1 (d) warehouse-57-27

Figure 6.1: Benchmark maps.

We ran 25 random queries for each benchmark for the SOC objective with the number of
tasks ranging from 6 tasks (12 agents) to 22 tasks (44 agents) and with a time limit of two

1The precise notion of a sparse environment requires introducing additional definitions which are out of the
context of this thesis but here we use the term intuitively.

44

Benchmark name den312d random-32-32-20 warehouse-10-20-10-2-1 warehouse-57-27
Environment type video game random warehouse warehouse

Grid Size 65× 81 = 5, 265 32× 32 = 1, 024 161× 63 = 10, 143 57× 27 = 1, 539
vertices 2, 445 819 5, 699 819

Sparsity ratio 0.46 0.8 0.56 0.53

Table 6.1: Benchmarks description.

minutes. For each benchmark, we compare the performance of three different variants of Co-
CBS: (i) basic Co-CBS, (ii) Co-CBS with prioritizing conflicts (PC), and (iii) Co-CBS with PC
and lazy expansion (LE) of root nodes.

As opposed to classical MAPF, where each agent is provided with start and goal locations, in
Co-MAPF, a task’s start and goal need to be provided (instead of explicitly providing an agent’s
goal). Thus, we defined the tasks in each scenario as follows, based on the original benchmark
scenario: for each pair of agents, one set of start and goal locations is used for the task, and the
other set is used for the agents’ start locations.

6.2 Co-CBS Empirical Evaluation

We first examine the algorithm’s success rate (i.e., the ratio of solved instances within the time
limit) for all benchmarks. Figure 6.2 shows the success rates of Co-CBS on all benchmarks.
Co-CBS successfully solves more than 80% of the instances with ten tasks on all benchmarks
besides den312d, in which the success rate sharply drops below 20% for twelve tasks or more.
This map is very dense, where most of the cells are blocked. When adding more agents it
becomes even denser, which explains the drop in the success rate. The random map is very
sparse, but very small. Therefore, the success rate drops for 18 tasks. On the other hand, on
the large warehouse (warehouse-10-20-10-2-1) Co-CBS achieves more than 50% success rate
on 20 tasks (40 agents).

Using PC improves the basic version of Co-CBS in all cases, achieving up to 30% increase
in the success rate. Furthermore, adding LE on top of PC further improves the performance in
most cases, and never degrades the performance. This is especially notable with a large number
of tasks, where many root nodes are created.

We now wish to examine the search in the meetings space. Figure 6.3a shows the average
number of generated meeting sets, which is equivalent to the number of generated root nodes.
Note that higher values mean more cardinal conflicts that cause an increase in the solution cost.
Therefore Co-CBS chooses to expand the search in the meetings space, by selecting root nodes for
expansion, and generating more root nodes (and meeting sets). This is especially notable on the
random and small warehouse benchmarks and correlates with the results shown in Figures 6.2b
and 6.2d, where adding PC+LE significantly improves the success rate.

Figure 6.3b shows the ratio η between the number of instances where the first set of meetings
is used to obtain the solution and the total number of instances. Both warehouse environments
are typically sparser, causing fewer conflicts between agents. Thus, for small number of tasks, a
feasible solution is usually found quickly using the first set of meetings. This is especially notable
in the large warehouse, where most solutions are obtained using the first set of meetings (i.e.,

45

(a) den312d (b) random-32-32-20

(c) warehouse-10-20-10-2-1 (d) warehouse-57-27

Figure 6.2: Success rates.

when η is close to one). The search in this case is equivalent to running CBS with the first set of
meetings. For the same reason, adding PC+LE does not significantly improve the performance
in this environment (as seen in Figure 6.2c). On the other hand, in other smaller and denser
environments, most solutions are not obtained using the first generated set of meetings (i.e., η
approaches 0, especially for a large number of tasks). A more exhaustive meeting-space search
is therefore required to find an optimal solution, as shown in Figure 6.3a. In these cases, the
success rate drops accordingly.

Figure 6.4 shows the results achieved using the baseline planner. We state that the baseline
algorithm achieves 100% success rate on all benchmarks. However, it performs very poorly in
terms of solution costs. The large warehouse environment is large and sparse, therefore the
baseline planner manages to plan conflict-free paths while suffering only a minor increase to the
cost. However, on the other maps the baseline planner suffers a 10% cost increase already for
only six tasks, the cost is increased by up to 40%.

6.3 Co-CBS with Task Assignment

In this section we present the results of an empirical evaluation for solving the Co-MAPF with
task assignment problem presented in Chapter 5. In this problem we do not assume that tasks

46

(a) (b)
Figure 6.3: (a) Number of generated sets of meetings. (b) Ratio η between the number of
instances solved using the first set of meetings, and the total number of instances.

Figure 6.4: The average cost increase over the optimal cost using the (sub-optimal) baseline
planner.

are pre-assigned to agents, and we also wish to solve the corresponding task assignment problem.
More specifically, we wish to determine the pairing of initiator agents with executor agents, and
pairs of agents to tasks, such that the total cost is minimized.

In the previous section we presented empirical results of running different variants of Co-
CBS without solving the task assignment problem. In practice, we used an arbitrary random
assignment of agents and tasks. In this section, we wish to empirically evaluate the effect
of solving the assignment problem for Co-MAPF. We compare the cost of obtained solutions
without solving the task assignment problem, with the different approaches for solving the task
assignment problem as well (see Section 5.3).

For the evaluation we use the same setup and benchmarks described in Section 6.1, and run
the improved version of Co-CBS, namely using PC+LE (see Section 4.5).

Recall that the purpose of solving the task assignment problem is to minimize the total cost
(see Equation 5.3). However, we first present and discuss the effect of solving the task assignment
problem on the algorithm’s success rate. In this section we use a five minutes timeout for all
experiments, and present the results of five different algorithms:

1. Co-CBS. Namely Co-CBS with an arbitrary assignment as in Section 6.2.

47

2. Co-CBS with Greedy Assignment. Namely, Co-CBS with a single-shot greedy assign-
ment (see Section 5.4).

3. Co-CBS with Single Assignment (m = 1). Namely Co-CBS with a single-shot assign-
ment using the compute_assignments algorithm with m = 1 (see Sections 5.1.3 and 5.3.1).

4. Co-CBS with Single Assignment (m = 100). Namely, Co-CBS with a single-shot
assignment using the compute_assignments algorithm with m = 100.

5. Co-CBS with Full Assignment Search. Namely, Co-CBS with a full assignments search,
with m = 100 (see Section 5.3.2).

Figure 6.5 shows the success rates of all algorithms on all benchmarks. We see that using
any approach for assigning agents and tasks (as opposed to a random assignment shown by the
blue line) may cause a significant increase in the success rate, up to roughly 70% in some of
the cases. The highest success rate is usually achieved using the greedy assignment algorithm,
as it does not require the calculation of the global cooperation cost matrix (see Section 5.2.1),
while still solving the assignment problem (albeit not optimally). On the small warehouse map
(warehouse-57-27) and the den312d map, which are very dense for a large number of agents,
the full-assignments algorithm achieves the best success rates (after the greedy assignment).
This is due to the fact that we consider solutions with different sets of assignments (rather than
just one), thus we find a solution more quickly.

There can be several reasons why solving the task assignment problem improves the suc-
cess rate compared to an arbitrary assignment. The main reason is that a good assignment
makes agents work in local environments thus avoiding many unnecessary conflicts. A further
investigation of this phenomena is discussed as an interesting direction for future research in
Chapter 7.

We now wish to examine the cost of the obtained solutions using the different algorithms.
Figure 6.6 shows several representative cases where we examine both the success rate and the
cost of the obtained solutions. The results are presented on a bi-objective graph, where the
x axis is the average cost increase rate (compared to the lowest-cost solution found for each
scenario). The y axis is the average fail rate (i.e., (1 − success_rate)). Better solutions have
lower average cost increase rate, as well as low fail rate. The blue circle, representing Co-CBS
without task assignment, is higher and to the right than all other algorithms in all cases. This
means that it performs the worst both in terms of cost and success rate. The greedy-assignment
algorithm achieves better success rates in most cases, but it returns solutions with higher cost.
We also see that there are only minor differences between the different algorithms that use
the compute_assignments algorithm, and that all of them outperforms the greedy-assignment
algorithm in terms of the cost. Note that in the case of the large warehouse and 40 agents
(Figure 6.6c), the cost of the obtained solutions using our suggested assignment algorithms is
almost half of the cost using an arbitrary assignment.

Finally, we present the time it takes the different algorithms to solve problem instances for
different number of tasks, in a representative case, and broken down into the different parts of
the algorithms. Figure 6.7 shows the total average time it takes each algorithm to solve problem
instances of the large warehouse map (warehouse-10-20-10-2-1). The total time refers only

48

(a) den312d (b) random-32-32-20

(c) warehouse-10-20-10-2-1 (d) warehouse-57-27

Figure 6.5: Success rates solving the task assignment problem.

to solved instances (which were solved within the time limit), and it is divided to three different
parts:

1. In blue, the time it takes to compute the global cooperation cost matrix (see Section 5.2.1).

2. In orange, the time it takes to compute the assignments using the compute_assignments
algorithm (see Section 5.1.3).

3. In green, the time it takes to run Co-CBS, given the assignment(s).

Co-CBS without task assignment (Figure 6.7a) and Co-CBS with a greedy assignment (6.7b)
solve only trivial instances that can be solved within a few seconds. Calculating the greedy
assignment is very fast it and takes very little time. When using the compute_assignments
algorithm for a large k, we see that most of the time is spent on calculating the global cooperation
cost matrix, and a significant amount of time on the compute_assignments algorithm (when
m = 100). This is the main reason why the greedy-assignment algorithm achieves a higher
success rate. For large values of k, we are highly motivated to reduce the time it takes to
compute the cost matrix, and indeed we suggest such an approach as a future research direction
in Chapter 7.

To summarize, in this chapter we presented a comprehensive empirical evaluation of our
proposed Co-CBS algorithm for solving the Co-MAPF problem. We presented the results of
running three different variants of Co-CBS, and saw that it outperforms a baseline prioritized
planner in terms of cost. In addition, we provided an empirical analysis demonstrating the
search Co-CBS performs in the meetings space for different cases. Finally, we presented results
of solving the task assignment problem, and we conclude that solving the task assignment as
well may significantly improve both the solution cost as well as the algorithm’s performance.

49

(a) den312d, k = 8 (b) random-32-32-20, k = 16

(c) warehouse-10-20-10-2-1, k = 20 (d) warehouse-57-27, k = 12

Figure 6.6: Success rates solving the task assignment problem.

50

(a) Co-CBS (b) Co-CBS + Greedy Assignment

(c) Co-CBS + Single Assignment (m = 1) (d) Co-CBS + Single Assignment (m = 100)

(e) Co-CBS + Full Assignments (m = 100)

Figure 6.7: Run-time of solving the task assignment problem.

51

Chapter 7

Conclusion and Future Work

In this final chapter we conclude our work by presenting a short summary and several directions
for future work. Specifically, we provide a comprehensive discussion regarding the suggested
model and algorithm, and suggest research directions in three different aspects: (i) improve-
ments and extensions to the suggested Co-CBS algorithm, (ii) possible extensions to Co-MAPF
framework, and (iii) open questions and issues regarding the task assignment problem in the
Co-MAPF context.

7.1 Summary

In this paper, we introduced and studied the Cooperative Multi-Agent Path Finding (Co-MAPF)
problem, an extension to classical MAPF that incorporates cooperative behavior. This problem
is motivated by real-world scenarios where several heterogeneous agents must coordinate their
decisions and actions to complete a joint task. We introduced a specific real-world problem, taken
from the warehouse-automation domain, where two different types of robots work together to
efficiently deliver packages in an automated warehouse.

We formally described the Co-MAPF problem, which is based on the classical MAPF for-
mulation, and introduced the notion of cooperative tasks, which require the coordination of two
different types of agents to be completed. Besides conflict-avoidance, we considered agents’
interaction via meetings, and defined the way a cooperative task is completed by scheduling a
meeting of the two agents.

Based on our suggested Co-MAPF formulation, we introduced Cooperative Conflict-Based
Search (Co-CBS), a three-level search algorithm that optimally solves Co-MAPF instances, by
searching in a so-called meetings space while resolving conflicts between agents. More specifically,
Co-CBS introduced the notion of root nodes, where each root node has a different set of meetings,
one for each task. We’ve shown an efficient way to enumerate and generate sets of meetings in a
best-first manner. Co-CBS searches the meetings space by expanding root nodes and generating
new root nodes (with new sets of meetings), and performing a CBS-like search for each different
set of meetings. We proved that Co-CBS finds the optimal solution for every solvable Co-MAPF
problem instance. We also showed that it is complete on source-connected instances, a wide and
general set of Co-MAPF problem instances.

Two improvements to Co-CBS were suggested: the previously suggested Prioritizing Conflict

52

(PC), and Lazy Expansion (LE) of root nodes. In PC, Co-CBS splits the search tree on cardinal
conflicts first, which are found by constructing a multi-valued decision diagrams (MDDs), which
compactly store all valid paths of a given cost. We proposed an efficient method to construct
MDDs in the Co-MAPF case, where agents are constrained to meet in order to complete a task.
LE exploits special characteristic of root nodes for speeding up the search. More specifically,
it uses the fact that the cost of sets of meetings is known in advance, therefore many low-level
plan computations can be spared.

We addressed the task assignment (TA) problem for Co-MAPF. We formulated the problem
as an axial 3D assignment problem, discussed its hardness and suggested to use an off-the-shelf
algorithm to approximate the best assignments. We described several approaches to integrate
task assignment into Co-CBS, and also suggested a greedy-assignment algorithm to use as a
baseline.

In our empirical evaluation, we showed that Co-CBS can solve non-trivial instances on well-
known MAPF benchmarks in a reasonable time. We showed how PC and LE improve the
algorithm performance, and discussed the effect of searching for a meeting in different bench-
marks. We also presented an empirical evaluation solving the task assignment problem, and
showed it can dramatically improve the cost of obtained solutions, as well as the algorithm’s
success rate.

Co-MAPF is a newly-suggested framework that is based on the extensively-researched MAPF
framework, towards more real-life applicability. We argue that Co-CBS forms a basic solution
approach that may serve as a natural starting point for future extensions. In the next section
we discuss several directions for future work.

7.2 Future Work

7.2.1 Co-CBS Improvements and Extensions

Node selection and expansion. Co-CBS may create a very large number of root nodes,
as the meetings space is exponential in the size of the graph and number of tasks. It may be
beneficial to use a heuristic function to guide the search towards better meeting sets, as well as
a pruning mechanism to reject possibly-infeasible or sub-optimal meeting sets.

Information reusing between constraint trees. Co-CBS expands root nodes by only
changing one meeting in the newly-created node. Moreover, the next selected meeting is usually
very close to the current meeting, both in location and time. This implies that Co-CBS searches
over multiple trees that potentially have very similar solutions. We may exploit this for more
efficient computation.

Meetings-level search. Co-CBS uses a simple-yet-effective method for finding an optimal
meeting for each task, by computing and storing a meetings table for each. For large problem
instances, this may become memory and run-time expensive, due to the maintenance of large
meeting tables. We may consider incorporating an algorithm such as the recently-proposed
CF-MM* algorithm [Atzmon et al., 2021], for the Multi-Agent Meeting problem.

53

Two-level planning. Co-CBS decouples meetings planning from path planning by adding a
third level of planning. Using CF-MM*, as suggested in the previous paragraph, to simultane-
ously search for a meeting for all agents can be used to handle conflicts between agents during
the search for a meeting. Coupling the two may be advantageous as meetings and conflicts may
be tightly coupled. Planning can then be done in two levels, where the low level handles both
meetings and constraints.

Concurrent Planning and Parallelization. Co-CBS’s search makes it a good candidate for
parallelization. We may perform a parallel search on multiple conflict trees, which is equivalent
to running multiple CBS searches simultaneously, each with a given set of meetings. Recall that
when a root node is expanded, up to k new root nodes can be created, each one with only one
meeting changed. This means that Co-CBS’s Open list potentially contains a large number of
nodes with a similar cost, at any given time. We can extract and validate all of them in parallel,
and potentially save a lot of run time.

Existing CBS improvements. In addition to the PC improvement presented in Section 4.5,
many more CBS improvements exist. Some of these include adding a heuristic function to the
high-level search [Felner et al., 2018]; using positive constraints due to conflicts, also known as
disjoint splitting [Li et al., 2019]; bypassing a conflict rather than splitting the search tree [Bo-
yarski et al., 2015a]; symmetry breaking in agent paths (e.g., in corridors) [Li et al., 2020], and
exploiting similarities between nodes in a single constraint tree [Boyarski et al., 2020]. We can
also apply (bounded) sub-optimal variants of CBS [Barer et al., 2014] to Co-CBS.

Meetings in adjacent locations. Co-CBS solves the Co-MAPF problem where agents are
required to meet in a single location. As discussed in Section 3.3.1, this definition of a meeting
can be modified by requiring the agents to meet in adjacent locations (namely two vertices
connected by an edge). Co-CBS can also solve these scenarios, with only slight modifications, as
planning for each agent is done independently. More specifically, when computing a meetings
table, for each vertex we need to account for all its neighbors and create a meeting for each one.
Moreover, when planning paths, each agent would have to arrive at its corresponding meeting
location (and time), rather than both agents arriving at a single location.

Co-CBS completeness. We defined the notion of source-connected Co-MAPF instances, a
general and wide set of problem instances, and proved that Co-CBS is complete on these in-
stances. However, Co-MAPF instances that do not adhere to the source-connected definition,
are usually solvable, and specifically will be solved optimally by Co-CBS. We therefore need to
find a more general way to check whether a Co-MAPF instance is solvable, similar to [Yu and
Rus, 2014] for classical MAPF. This forms an interesting theoretical research question for future
research.

7.2.2 Extensions to the Co-MAPF Framework

Number and types of collaborating agents. A rather straightforward generalization of the
Co-MAPF framework is to require more than two agents to collaborate on a task. The problem

54

introduced in Chapter 1 motivates this extension: several grasp units may pickup several items
for a single transfer unit. Co-CBS can solve this problem with a few minor changes. However,
if the number of agents per task isn’t fixed, additional work is required. Moreover, we may
consider agents with different traversal capabilities (e.g., different velocities [Hönig et al., 2016]),
by possibly changing the single-agent planner.

Other forms of cooperative interaction. We introduced a definition for the Co-MAPF
problem, where interaction between agents is expressed via meetings between two types of
agents, an initiator and an executor. While this interaction is very intuitive, more forms of
cooperative interaction can be modeled. For example, we may represent temporal constraints
between agents, such as precedence (e.g., the initiator need to arrive at the meeting location
before the executor agent, rather than at the same time). We may generalize the formulation
to include a finite set of possible agent types, and define more complex tasks where each agent
type has its dedicated role. Furthermore, we state that the framework provided by Co-CBS
might allow to address such general definitions by only adjusting the cooperation-level search
(in our case, finding meeting locations and times, and constraining agents’ paths to arrive at
the meetings). Any cooperative planning, which results in inducing goals for an agent (for the
path-level search), can be easily plugged in into Co-CBS.

Lifelong planning. In this problem we assume cooperative tasks are pre-defined and known
in advance. However, lifelong-planning problems may fit to more real world applications. In
these problems, agents have to attend to a stream of incoming tasks. Such Generalization
of the Co-MAPF framework will bring the formulation closer to real-world problems. Several
interesting questions arise in this context. For instance, how do we measure optimality and
define the cost of meetings. Another issue relates to the fact that two collaborating agent finish
their part in the task at different times. More specifically, the initiator agent may finish its part
before the executor agent. We therefore need to reassign the initiator to another task (with
another executor agent), and minimize the times agents are idle.

7.2.3 Task Assignment for Co-MAPF

Optimality guarantees and bounds. In Section 5.3 we suggested two approaches to inte-
grate the compute_assignments algorithm into Co-CBS. The compute_assignments algorithm,
presented in Section 5.1.3, finds approximate solutions to the S-D multi-index assignment prob-
lem, by relaxing the corresponding constrained optimization problem. We may wish to inves-
tigate how this affects the optimality guarantees of Co-CBS, and suggest ways to bound the
deviation from the optimal cost in the solutions found by Co-CBS.

Approximating the global cooperation cost matrix. In our empirical evaluation, pre-
sented in Chapter 6, we examined the run time of the different algorithms for solving the
Co-MAPF problem with task assignment. Specifically, we saw that for a large number of tasks,
most of the time is spent on calculating the global cooperation cost matrix C. This matrix
specifies the cost of completing task, for each combination of initiator agent and executor agent,

55

using the corresponding lowest-cost meeting. The time complexity of calculating C is of O(k3),
and we may suggest ways to make this more efficient by approximating the matrix C, possibly
by eliminating combinations of agents and tasks, using some heuristic.

Task assignment effect on the success rate. Another phenomena we observed in the em-
pirical evaluation, is the fact that assigning agents to tasks in an informed way can dramatically
increase the success rate of the search algorithm. In other words, determining specific assign-
ments has an impact on the hardness of the induced problem of finding conflict-free paths. This
phenomena should be further investigated. This also relates to the issue of changing the layout
of a warehouse, as discussed in [Salzman and Stern, 2020].

56

Appendix A

Planning for Cooperative Multiple
Agents with Sparse Interaction
Constraints

A.1 Introduction

The problem of cooperative multi-agent planning (MAP) is motivated by many real-world ap-
plications in a variety of domains, such as military, logistics, and search-and-rescue. In these
problems, agents must coordinate their decisions to maximize their (joint) team value. When
the state of the environment and all agents is fully-observable by each agent, the planning prob-
lem can be formalized as a multi-agent Markov decision process (MMDP, [Boutilier, 1996]).
However, these models suffer from exponential increase in the size of the state and action spaces
in the number of agents, which makes them computationally intractable in general. Specific
structural assumptions are therefore required for an optimal solution to be feasible.

An important class of problems concerns high-level planning problems, where agents are
essentially independent except for a prescribed set of possible interactions that can facilitate the
plan execution. These types of problems are typically characterized by loose coupling and sparse
interactions between agents, and some models exploit this fact to develop efficient algorithms.
The complexity of such algorithms is often described by means of the problem coupling level.
For instance, [Nissim et al., 2010] propose a fully distributed planning algorithm, based on
the MA-STRIPS [Brafman and Domshlak, 2008] model, and [Melo and Veloso, 2011] propose
approximate algorithms based on the decentralized sparse-interaction MDPs model.

Another common approach is to exploit the problem structure by using a compact repre-
sentation with factored models. An example of such a representation is the coordination graph
[Guestrin et al., 2002], also referred to as interaction graph [Nair et al., 2005] or collabora-
tive graphical games [Oliehoek et al., 2012], which is solved using a graph-based optimization
method, such as variable elimination (VE) [Guestrin et al., 2002; Larrosa and Dechter, 2003],
or by distributed methods as investigated in the field of distributed constraint optimization
problem (DCOPs, [Fioretto et al., 2018]).

It is also possible to exploit locality of interactions [Oliehoek et al., 2008; Melo and Veloso,

57

2011] and reward structure in transition-independent models, both centralized [Scharpff et al.,
2016] and decentralized [Becker et al., 2004]. More specifically, in [Scharpff et al., 2016] re-
ward dependencies are represented using conditional return graphs (CRGs) which are solved
by a branch-and-bound policy search algorithm. In [Becker et al., 2004] a general formulation
is suggested to represent the reward structure, using the notion of events. A coverage set al-
gorithm is presented to find optimal policies. Scalability can often be improved even on more
complex models, such as Network Distributed Partially Observable MDP (ND-POMDP), by
leveraging sparse and structured interactions among agents. For example, the CBDP [Kumar
and Zilberstein, 2009] algorithm is exponential only in the width of agents interaction graph.

In this paper, we focus on the multi-agent planning problem in a deterministic environment,
where interactions between agents are symmetric and sparse. Possible interactions are captured
using a notion of soft cooperation constraints (SCC), where agents can affect the cost function
by jointly satisfying prescribed constraints in state and time. This formulation is akin to the
event-based formulation of [Becker et al., 2004], although less general to allow more specific and
explicit computation schemes for each agent.

Based on the SCC model, we present a complete and optimal two-step planning algorithm,
effective mostly in cases where interactions among agents are sparse. It is a dynamic pro-
gramming (DP)-based algorithm, that decouples a multi-agent problem with K agents to K

independent single-agent problems, such that the aggregation of the single-agent plans is opti-
mal for the group. More specifically, in the first step we independently compute each agent’s
response function, which is its optimal plan with respect to all possible assignments of the tim-
ing variables of its associated constraints. We present an explicit algorithm for computing the
response function, and provide a detailed complexity analysis. The second step is a centralized
global plan merging, in which an optimal assignment to the timing variables is found under
the minimum-sum objective. A factor graph, which captures dependencies among cooperative
agents and exploits the internal structure of the problem, is applied to the problem with a
variable elimination algorithm for efficient min-sum optimization.

Complexity analysis shows that the proposed algorithm is linear in the number of agents,
polynomial in the span of the time horizon, and depends exponentially only on the number of
interactions among agents.

We present a simulation implementing our proposed algorithm on a specific multi-agent
planning problem. Our simulations show that the algorithm is efficient for this particular multi-
agent setup and scales well in the number of agents compared to a standard solution.

We finally outline possible extensions to our model, to represent more complex cooperation
constraints. For details of these extensions we refer [Revach, 2018].

The remainder of the paper is organized as follows. In section A.2 we present the model used
and the formulation of SCC. Section A.3 presents a detailed description and implementation
of our algorithm, followed by a complexity analysis. In section A.4 we present experimental
results for our algorithm. In section A.5 we present an extension to our model to include
asymmetric interactions between agents. Section A.6 concludes the paper and suggests directions
for extensions and future research.

58

A.2 Model

We consider the finite horizon multi-agent deterministic planning problem. Our starting point
is an MMDP with a factored state space, defined by a tuple ⟨T ,G,S,A,H, C, σI , σ∗⟩, where

• T = {0, ..., T} is the time domain of length T .

• G = {g1,g2, ...,gK} is a set of K agents.

• S = S1× ...×SK is a finite state space, factored across agents, where Sk is the state space
of agent gk.

• A = A1 × ...×AK is a joint action space, similarly factored across agents.

• H : S ×A → S is a deterministic transition function.

• C : S ×A → R ∪ {∞} is a real-valued cost function.

• σI ∈ S is the initial state s⃗0, and σ∗ ∈ S the goal state.

Our objective is to find an optimal group policy π⃗∗ such that Jπ⃗ is minimal, i.e., π⃗∗ ∈
arg minπ⃗∈ΠK Jπ⃗, where π⃗ = (π1, ..., πK) is the joint policy, Jπ⃗ is the aggregate cumulative cost
defined by

Jπ⃗ =
T −1∑
t=0
C (s⃗t, a⃗t) (A.1)

if s⃗T = σ∗, and Jπ⃗ =∞ otherwise. Here a⃗t = (at,1, at,2, ..., at,K) ∈ A is the joint action at time
t, such that at,k = πk (st, t).

We next describe the sparse interactions structure. We first assume transition and cost
independence across agents, namely

H (s⃗, a⃗) = (H1 (s1, a1) , . . . ,HK (sK , aK)) (A.2)

and

C (s⃗, a⃗) =
K∑

k=1
Ck (sk, ak) (A.3)

Coupling between agents is introduced via a set Ψ = {ψ1, ..., ψL} of soft cooperation con-
straints. Each constraint ψℓ defines a single opportunity for cooperative interaction between
agents. In particular, a constraint ψℓ, ℓ ∈ {1, ..., L}, is specified by the following tuple:

ψℓ =
⟨
Gℓ,Σℓ, C−

ℓ , Tℓ

⟩
(A.4)

where

• Gℓ = {gk, k ∈ Kℓ}, with Kℓ = (kℓ,1, . . . , kℓ,n(ℓ)), is the set of n(ℓ) agents interacting in
constraint ψℓ.

• Σℓ = {σℓ,k, k ∈ Kℓ}, with σℓ,k ∈ Sk, is a set of local interaction states. Namely, for the
constraint to hold, agent k is required to be in state σℓ,k at some prescribed time.

59

• C−
ℓ is a (reduced) immediate cost for the group for interaction, applicable when the con-

straint is satisfied (see equation A.5).

• Tℓ is the constraint time domain; i.e., it is a subset of time instances at which the interaction
may take place: Tℓ ⊆ {0, 1, ..., T − 1} ∪ T∅. Here T∅ is a special notation for the null
assignment, where the constraint is not satisfied, i.e., there is no interaction.

Note that the SCC formulation can be extended to represent more general constraints. For
instance, a constraint can have a set of time domains, one for each agent, such that each agent
interacts at a different time. Moreover, a constraint can have a subset of interaction states
(instead of a single state). While the ideas are similar, for concreteness and brevity we leave
these extensions to future work.

A.2.1 Interaction-Dependent Cost

Agents are coupled only via the constraint set Ψ. Therefore, the group cost depends on the
constraints satisfied, where each satisfied constraint ψℓ represents an interaction which applies
the group a reduced cost C−

ℓ . We now describe the structure of the group cost under this
formulation.

Let τℓ ∈ Tℓ be an interaction timing variable that defines the timing of the interaction under
constraint ψℓ. For a given assignment to the timing variable τℓ, we define an indicator function
that is true if all interacting agents in Gℓ satisfy constraint ψℓ:

ψ̂ℓ (τℓ; π⃗) = I{τℓ ̸=T∅}
∏

k∈Kℓ

I{sτℓ,k=σℓ,k} (A.5)

where IA is the 0/1 indicator of event A. Namely, constraint ψℓ is satisfied given τℓ = τ if τ ̸= T∅

and all interacting agents in ψℓ arrive at their interaction state at time τ .
Furthermore, τ⃗ is the interaction vector, and D is its domain, i.e., the cross space of all

constraint time domains:

τ⃗ = (τ1, τ2, ..., τL) ∈ T1 × T2 × ...× TL ≜ D (A.6)

τ⃗k is the timing vector of all constraints involving agent gk (with domain Dk).
Under this new formulation, given an initial state σI ∈ S, a goal state σ∗ ∈ S, and a

constraint set Ψ, our objective is to find the optimal group policy where Jπ⃗ in equation A.1 is
now

Jπ⃗ (τ⃗) =
T −1∑
t=0

K∑
k=1
C0,k (st,k, at,k) +

L∑
ℓ=1

ψ̂ℓ (τℓ; π⃗) C−
ℓ (A.7)

where C0,k is the single-agent independent immediate cost with no consideration of interactions.
Namely, it is the sum of all agents’ independent immediate cost plus the sum of the reduced
costs of all satisfied constraints.

Note that now the multi-agent optimal policy π⃗ is a parametric policy with respect to timing
variables, and the aggregate cumulative cost Jπ⃗ is a function of the timing variables. Effectively,
there may be a different optimal policy for each assignment of timing variables. Furthermore,

60

J∗
k (τ⃗k) is the optimal response function (i.e., the optimal cumulative cost) for agent gk given an

assignment of the timing vector τ⃗ .
Our objective is to minimize the multi-agent cumulative cost under L interaction constraints:

J∗ = min
τ⃗∈D

min
π⃗∈ΠK

{
Jπ⃗ (τ⃗)

}
(A.8)

where Jπ⃗ (τ⃗), defined by equation A.7, is decomposable, and where each single agent cost function
depends only on the single agent policy. Therefore, we may switch the order of summation to
compute independently for each agent:

Jπ⃗ (τ⃗) =
K∑

k=1

T −1∑
t=0
C0,k (st,k, at,k) +

L∑
ℓ=1

ψ̂ℓ (τℓ; π⃗) C−
ℓ (A.9)

provided that s⃗T = σ∗ and Jπ⃗ (τ⃗) =∞ otherwise.
We can then minimize each single agent cost independently for any given assignment of the

timing vector τ⃗ ∈ D (and specifically τ⃗k for each agent gk). After the optimal single agent
response functions are found, we need to find the optimal assignment for the timing variables.
Let us observe that the multi-agent problem decomposition results in a min-sum optimization
problem:

τ⃗∗ ∈ arg min
τ⃗∈D

K∑
k=1

J∗
k (τ⃗k) (A.10)

that is, the sum of optimal response functions. We can use this structure to our advantage by
applying an efficient optimization algorithm.

A.3 DIPLOMA - Distributed Planning and Optimization Algo-
rithm for Multiple Agents

In this section we present the DIstributed PLanning and Optimization algorithm for Multiple
Agents (DIPLOMA), which addresses the previous multi-agent interaction model and optimizes
cost and policy. Using this model, we are able to decompose a global multi-agent planning prob-
lem into a two-step problem. First, K distributed independent single-agent planning problems
are solved. Second, we optimize the global solution with respect to the cooperation constraints
by selecting a plan for each agent.

We now describe the steps of our proposed algorithm, presented in algorithm A.1:

1. Response Function Computation

For every agent gk ∈ G, compute the single agent response function independently,

∀τ⃗k ∈ Dk , J∗
k (τ⃗k) = min

πk∈Πk

Jπk
k (τ⃗k) (A.11)

It may be computed using various dynamic programming algorithms, and more specifically
using the algorithms described next, in detail. This step can be parallelized over agents.

61

2. Plan Merging

Compute the optimal total multi-agent cost by minimizing the sum single agent response
with respect to the constraint variables. More specifically:

J∗ = min
τ⃗∈D

K∑
k=1

J∗
k (τ⃗k) (A.12)

The minimization process can be carried out efficiently using factor graph modeling and a
variable elimination algorithm, as described below. Let τ⃗∗ denote the optimal assignment
of the constraint variables.

3. Policy Backtracking

(a) For every agent gk ∈ G, backtrack the single agent optimal policy independently:

π∗
k ∈ arg min

πk∈Πk

Jπk
k (τ⃗∗

k) (A.13)

(b) The global optimal multi-agent policy is then given by

π⃗∗ = {π∗
1, π

∗
2, ..., π

∗
k, ..., π

∗
K} (A.14)

Algorithm A.1 DIPLOMA
1: returns π⃗∗, the optimal group policy
2: inputs: MMDP, Ψ
3: for all gk ∈ G do ▷ response function computation
4: for all τ⃗k ∈ Dk do
5: J∗

k (τ⃗k) = minπk∈Πk
Jπk

k (τ⃗k)

6: J∗ = minτ⃗∈D
∑K

k=1 J∗
k (τ⃗k) ▷ plan merging

7: τ⃗∗ ∈ arg minτ⃗∈D
∑K

k=1 J∗
k (τ⃗k)

8: for all gk ∈ G do
9: π∗

k ∈ arg minπk∈Πk
Jπk

k (τ⃗∗
k)

10: π⃗∗ = {π∗
1, π

∗
2, ..., π

∗
k, ..., π

∗
K}

11: return π⃗∗

A.3.1 Response Function Computation

The main step of our proposed algorithm is computing the single agent response function with
respect to constraint timing variables. We now describe algorithms to compute J∗

k efficiently for
each agent. Before describing the algorithms in detail, we present a few basic definitions and
notations:

• The algorithms presented are from a single agent perspective; therefore, we omit the index
k from the notation wherever possible.

62

• V∗ (σ, σ∗, τ), the cost-to-state, is the optimal cumulative cost from state σ at time t = τ

to the target state σ∗ in T − τ time steps.

• J ∗ (σI , σ, τ), the cost-from-state, is the optimal cumulative cost from initial state σI at
time t = 0 to state σ in τ time steps, and J∗ = J ∗ (σI , σ∗, T).

• More generally, V∗
♢ (sI , sg, τI , τg) is the optimal cumulative cost from state sI at time t = τI

to state sg at time t = τg in τg − τI time steps.

We start with the following computation in algorithm A.2 of the cost-to-state and cost-from-
state. The result is required only for intermediate states in the agent’s constraint set. A natural
implementation by Dynamic Programming (DP) computes these costs via a single pass for all
states and times.

Algorithm A.2 Costs to and from states
1: for all τ ∈ {1, .., T} and σ ∈ {σℓ} do
2: Compute J ∗ (σI , σ, τ) iteratively using DP.
3: for all τ ∈ {T − 1, .., 0} σ ∈ {σℓ} do
4: Compute V∗ (σ, σ∗, τ) iteratively using DP.
5: Cache all results for later use.

The single agent response function is the optimal cumulative cost with respect to the timing
variables, i.e., the optimal plan from the initial state to the goal state, while satisfying the
constraints in times specified by the timing variables. To simplify the presentation, we start
by showing how to compute the single-agent response function with a single interaction (i.e., a
single constraint), and then follow with the general case of L interactions.

Let τℓ be a single timing variable (i.e., L = ℓ = 1), and J∗
σ (τℓ) the optimal cumulative cost

from initial state σI to goal state σ∗ in T time steps, via the intermediate state σℓ; i.e., sτℓ
= σℓ.

For a given assignment of τℓ, we can compute the response function in this simple case as:

J∗
σ (τ) =

{
J∗, τ = T∅

J ∗ (σI , σℓ, τ) + V∗ (σℓ, σ∗, τ) , otherwise
(A.15)

Namely, it is computed by two parts: planning from the initial state σI in time t = 0 to the
constraint state σℓ in time t = τℓ, and from the latter to the goal state at T (i.e., for T − τ time
steps). If τℓ = T∅, the constraint is not imposed. Hence, J∗

σ (τℓ) = J∗, i.e., the optimal cost with
no consideration of interactions.

The generalization for L = Lk constraints (the number of constraints agent k is involved in)
follows the same idea. We need to compute the response function J∗

σ1,...,σL
(τ1, ..., τL) for every

assignment of L timing variables. We present an incremental scheme that efficiently avoids
repeated computation of given segments:

1. Pre-compute the state-to-state cost functions by dynamic programming, and cache the
results for later use:

1.1. Apply algorithm A.2.

63

1.2. Pre-compute V∗
♢ using algorithm A.3.

2. Build the response function from the bottom up using the previously cached values that
were pre-computed in the previous step, using algorithms A.4 and A.5. For simplicity we
use the following concise notation, for 1 ≤ ℓ ≤ L:

J∗ {ℓ} ≜ J∗
σ1,...,σℓ

(τ1, ..., τℓ) (A.16)

In algorithm A.5 we show how to compute J∗ {ℓ+ 1} for all assignments to τℓ+1, given
J∗ {ℓ} for a specific assignment to τ1, . . . , τℓ. The idea is essentially to replace V∗

♢ (σℓ1 , σℓ2 , τℓ1 , τℓ2)
by the sum V∗

♢ (σℓ1 , σℓ+1, τℓ1 , τℓ+1) +V∗
♢ (σℓ+1, σℓ2 , τℓ+1, τℓ2) when constraint ℓ+ 1 is added

with timing assignment τℓ+1 between existing τℓ1 and τℓ2 .

Algorithm A.3 Multiple constraint response - step 1.2
1: for all σi, σj ∈ {σ1, σ2, ..., σL} do
2: for all τi ∈ Ti do
3: for all τj ∈ Tj , τj > τi do
4: Compute V∗

♢ (σi, σj , τi, τj)
5: Cache the results for later use.

Algorithm A.4 Multiple constraint response - step 2
1: for all ℓ ∈ {1, 2, ..., L− 1} do
2: for all τ1, τ2, ..., τℓ do
3: For a given assignment to τ1, τ2, ..., τℓ

4: Such that τi1 ≤ τi2 ≤ ... ≤ τiℓ

5: Compute J∗ {ℓ+ 1} from J∗ {ℓ} for all τℓ+1 ∈ Tℓ+1, using Algorithm A.5

A.3.2 Plan Merging

The plan merging step of our proposed algorithm requires finding an optimal assignment to the
timing variables while optimizing the global cost function J∗ (τ⃗). This is a weighted constraint
satisfaction programming problem, which is NP-hard in the general case [Larrosa and Dechter,
2003]. In the special case of the min-sum objective (equation A.12), we can reduce optimization
complexity by using models that consider the internal structure of the dependency among agents.
A graphical model, called factor graph [Loeliger, 2004], describes the interaction among agents,
and captures agent dependency or independency, therefore leading to more efficient optimization
algorithms.

A factor graph contains variable nodes representing constraint variables (the timing vari-
ables), and factor nodes representing single-agent cost functions J∗

k (τ⃗k). Edges connect a cost
function to all the variables associated with the constraints involved in that cost function. Fig-
ure A.1 illustrates how the min-sum optimization problem is represented using a factor graph.
In this example, we have three cooperation constraints, where G1 = {g1,g2,g3} ,G2 = {g1,g3},
and G3 = {g3,g4}.

64

Algorithm A.5 Multiple constraint response - inner algorithm
1: Assume τi1 ≤ τi2 ≤ ... ≤ τiℓ

2: p = 1 ▷ Initialize pivot index
3: b = 1 ▷ Set baseline flag
4: for all τℓ+1 ∈ {0, 1, ..., T − 1} do
5: if p = 1 then
6: if b = 1 then
7: J∗

base = J∗{ℓ} − J ∗ (σI , σi1 , τi1) ▷ Initialize a baseline value for J∗{ℓ+ 1}
8: b = 0 ▷ Reset baseline flag
9: if τℓ+1 < τi1 then

10: J∗{ℓ+ 1} = J∗
base + J ∗ (σI , σℓ+1, τℓ+1) + V∗

♢ (σℓ+1, σi1 , τℓ+1, τi1)
11: else ▷ τℓ+1 = τi1

12: J∗{ℓ+ 1} =∞ ▷ There is no valid plan that meets the constraints
13: p = 2 ▷ Increment pivot index
14: b = 1 ▷ Set baseline flag
15: else if 1 < p ≤ ℓ then
16: if b = 1 then
17: J∗

base = J∗{ℓ} − V∗
♢
(
σip−1 , σip , τip−1 , τip

)
18: b = 0 ▷ Reset baseline flag
19: if τℓ+1 < τip then
20: J∗{ℓ+ 1} = J∗

base + V∗
♢
(
σip−1 , σℓ+1, τip−1 , τℓ+1

)
+ V∗

♢
(
σℓ+1, σip , τℓ+1, τip

)
21: else ▷ τℓ+1 = τip

22: J∗{ℓ+ 1} =∞ ▷ There is no valid plan that meets the constraints
23: p = p+ 1 ▷ Increment pivot index
24: b = 1 ▷ Set baseline flag
25: else ▷ p > ℓ
26: if b = 1 then
27: J∗

base = J∗{ℓ} − V∗ (σiℓ
, σ∗, τiℓ

) ▷ Initialize a baseline value for J∗{ℓ+ 1}
28: b = 0 ▷ Reset baseline flag
29: J∗{ℓ+ 1} = J∗

base + V∗
♢ (σiℓ

, σℓ+1, τiℓ
, τℓ+1) + V∗ (σiℓ+1 , σ∗, τiℓ+1

)
30: J∗{ℓ+ 1} (T∅) = J∗{ℓ} ▷ τℓ+1 is equal to the null assignment, namely no constraint

On the factor graph we apply a variable elimination (VE) algorithm, which is used mainly for
exact inference [Koller and Friedman, 2009]. VE exploits the internal structure of the problem
and reduces computations [Larrosa and Dechter, 2003].

The factor graph structure and the VE elimination ordering have a major effect on the
complexity and efficiency of the algorithm, which is out of the scope of this work (see [Koller
and Friedman, 2009]). However, in the next section we present several representative cases. The
scheme for applying VE to solve the optimization problem is described in [Revach, 2018].

A.3.3 Complexity Analysis

In this section we present an overall complexity analysis of our proposed algorithm. We first
present the complexity of the response function computation, followed by an overall analysis of a
few representative cases, and establish an upper bound on the complexity of planning problems.
The complexity result is formulated in terms of the overhead of planning for a multi-agent
system as a function of planning for each single agent in isolation, when considering the same
problem structure. More specifically, we denote T (V∗, T) and T (J ∗, T) as the time complexity

65

Figure A.1: Factor graph example.

of computing a single-agent cost-to-state and cost-from-state, respectively, over the time horizon
T , and assume T (V∗, T) = T (J ∗, T).

For the response function computation, the first step of pre-computation (algorithms A.2
and A.3) is of the order of L2 ·

∑
τℓ∈Tℓ

T (V∗, τℓ) ≤ L2 · T
2 ·T (V∗, T), where L is the number of

constraints in which the agent is involved. We can use an efficient algorithm for computing a
single agent cost-to-state from every initial state to a fixed and specific goal state (e.g., using
dynamic programming) and denote its time complexity as T (V∗

B, T). In that case, we may reduce
the time complexity by a factor of L, compared to single agent planning, i.e., L · T

2 ·T (V∗
B, T).

The time complexity of the second step (algorithm A.4) is dominated by O
(
TL
)
. Therefore,

the overall complexity for computing the response function is

L · T
2
·T (V∗

B, T) +O
(
TL
)

(A.17)

In the case of a single constraint, this reduces to 2 ·T (V∗, T) +O (T) (equation A.15).
The complexity of the plan merging step, and more specifically the VE algorithm, depends on

the scope size of each factor; that is, the number of variables to which each factor is connected.
The total complexity has an exponential dependency in the scope size of the factors and it is of
the order of O ((K + L) · dm) where m is the maximal scope size of factors and d is the maximal
number of values of each variable. For a detailed complexity analysis of the VE algorithm on a
factor graph, see [Revach, 2018; Koller and Friedman, 2009].

We now present an analysis of the overall time complexity for several representative cases.
We start with a very sparse case, where there are 2 · L agents, each of which is involved in only
one cooperation constraint, i.e., K = 2 ·L. The response function computation time complexity
is dominated by 2 ·T (V∗, T) +O (T) and is linear in the span of the time horizon. Each timing
variable does not depend on any of the other variables. The time complexity of eliminating a
single variable is dominated by O (T); i.e., it is also linear in the span of the time horizon. The
overall complexity is K · [2 ·T (V∗, T) +O (T)] + L · O (T) = 2·K · T (V∗, T) + 3

2 · K · O (T).
Because of the inherent decoupling in this case, this is equal to solving L = K

2 independent
problems.

In a dense case we consider two agents with L ≥ 2 cooperation constraints between them
(i.e., each agent is involved in L constraints). The time complexity of the response function
computation is exponential in L. As all the timing variables belong to the same factors, they are
therefore dependent. The time complexity of the plan merging is also exponential in L, but it is
not the dominating part. The overall complexity is dominated by 2·L·

(
T
2 ·T (V∗

B, T) +O
(
TL
))

.

66

We now consider an hierarchical case, where each constraint involves two agents and the
factor graph is a balanced N -tree with depth M . There are NM agents (factors) that are
represented as leaf nodes in the tree, and K − NM agents that are not represented as leaf
nodes. Here, K is equal to K =

∑M
m=0N

m; therefore, the total number of cooperation con-
straints is equal to L = K − 1. Each of the leaf agents is involved in only one coopera-
tion constraint; therefore, the complexity of computing their response function is just linear:
NM · (2 ·T (V∗, T) +O (T)). An agent that is not a leaf node in the tree is involved in N + 1
cooperation constraints. Therefore, the complexity of computing their response function is(
K −NM

)
· (N + 1) ·

(
T
2 ·T (V∗

B, T) +O
(
TN+1

))
. In the case of a tree, the plan merging is ex-

ecuted bottom up from the leaf nodes to the root node. Every factor that is not a leaf generates
an N + 1 cliques (see [Koller and Friedman, 2009]) of timing variables (i.e., all the variables on
which the factor depends). Therefore, the complexity of plan merging is dominated by the size
and number of cliques. The complexity of eliminating a clique by a VE algorithm is dominated
by O

(
TN+1

)
, and the number of cliques is equal to CL = K −NM . Note that the process of

eliminating cliques in the same level of the tree can be distributed and parallelized.
Finally, we define a coupling measure ρ for the system as the maximal number of constraints

in which each agent is involved,

ρ = max
k

Lk, k = 1, . . . ,K (A.18)

where Lk is the number of constraints in which agent gk is involved. An upper bound for the
complexity is linear in K, polynomial in T , and exponential only in ρ:

O
(
K · ρ ·

(
T

2
·T (V∗

B, T) + T ρ
))

(A.19)

A.4 Experiments

In this section we present the results of basic experiments performed using DIPLOMA, in order
to validate its correctness and test its time complexity. We compare the algorithm’s perfor-
mance against a centralized DP algorithm solving the underlying MMDP. We use the same DP
algorithm for calculating J ∗ (σI , σ, τ) and V∗ (σ, σ∗, τ) in algorithm A.2. All simulations were
performed on an Intel i7-8700 CPU @ 3.20Ghz machine with 16.0 GB RAM.

We ran our simulations on a simple grid world example where several agents have to travel
from an initial location to a goal location in T time steps while collecting as many boxes as
possible. Each box has its own reward and associated agent, and some boxes can be picked
by two agents together in order to gain a double reward. In order for agents to pick a box
together, they have to meet at the box location at the same time. Agents can move up, left, or
right, and collect the reward upon moving up from their box location. Our goal is to find an
optimal joint plan such that the group reward is maximized. Note that in this example we use
reward instead of cost used in the model; however, replacing between the two is trivial by taking
negative rewards. This problem is depicted in figure A.2 for a grid of 10 × 10 and four agents
(K = 4). This problem is quite simple but can represent scheduling problems, box-pushing,
search-and-rescue and more.

67

Figure A.2: A box-collecting problem on a 10 × 10 grid with four agents (K = 4), denoted by
four different colors. All agents start in the bottom row and have to arrive to the corresponding
warehouse at the top row within T time steps. Each agent can only pick boxes of its color.
Agents can cooperate in three different locations (L = 3), illustrated by a two-colored box. For
instance, in the box located in (0, 2), the red agent can pick the box alone and receive a reward
of 3, or it can pick it with the assistance of the blue agent and receive a reward of 6.

Figure A.3: Simulation results for K = 2 (a), K = 3 (b), and K = 4 (c) on a logarithmic
scale. The centralized reference planner does not depend on the coupling measure (i.e., number
of constraints in the problem), but scales poorly on the number of agents, and for K = 4 is
practically infeasible. DIPLOMA algorithm achieves an improvement of 2 orders of magnitude,
and depends on the coupling level.

68

We ran our simulation on a fixed grid size of 10×10
(
|S| = 100K

)
, a fixed horizon of T = 20

time steps, and different values for number of agents (K), and constraints (L). For every value of
K we generated 20 random environments (with a random number of constraints) and measured
the runtime of the centralized reference algorithm and DIPLOMA. Figure A.3 demonstrates how
our proposed algorithm scales in the number of agents, and depends on the coupling measure
ρ (see equation A.18). We also compare the runtime of our algorithm using the VE algorithm
for the plan merging step, compared to a brute-force (BF) optimization. Elimination ordering
for VE was determined by a simplified min-neighbors criteria [Koller and Friedman, 2009]. The
reference algorithm does not depend on the coupling measure (i.e., number of constraints), but
for K = 3, has a runtime higher by two orders of magnitude than DIPLOMA. A value of K = 4
makes it practically infeasible to run. DIPLOMA, on the other hand, scales well in the number
of agents and depends mostly on the coupling level. Furthermore, using VE optimization for
the plan merging step (compared to a brute-force optimization), reduces runtime significantly
when the coupling measure increases.

A.5 Extension to Asymmetric Interactions

In this paper we focus on simple symmetric interactions between agents, i.e., meeting constraints
where all agents must arrive at the same time for the group to benefit from the interaction. Our
model, however, can be extended to include asymmetric and more complex temporal constraints,
enabling a compact representation of such constraints. Furthermore, it enables the development
of efficient planning algorithms that exploit the linear time complexity of solving an MDP. This
can be done by applying the group interaction cost C−

ℓ to a specific interacting agent, called the
affected agent, and embedding an activation function of the form fℓ : T × Tℓ → {0, 1} into the
affected agent’s immediate cost. The activation function defines a set of time instances where
the interaction cost is applicable.

As an example, one can consider a scenario where a facilitating agent can arrive at a certain
state in time τ ∈ T = {1, ..., 10}, which opens a 10 time steps window following time τ , allowing
the second agent to receive an additional reward for each time step (within this time window) in
which it is in a related state. If we formulate this interaction using a distinct constraint for each
possible state-time pair, we need 102 = 100 constraints, and thus checking about 2100 ≈ 1030

different combinations of constraints. By formulating this interaction with an SCC, using a
step activation function, we would have only 10 constraints. We would need to check only
210 = 1024 ≈ 103 combinations of constraints of the first agent, and for each one, solve a
single induced MDP for the second agent. Thus, we obtain an improvement of many orders of
magnitude in this simple case.

A detailed formulation and implementation of this extension is presented in [Revach, 2018],
including an efficient asymmetric planning algorithm using a step activation function.

Another rather trivial extension to asymmetric interactions is to use a different interaction
timing for every interacting agent in a constraint. Since we calculate the agents’ response for
each τ ∈ {0, . . . , T } (see algorithm A.5), we can choose a different value of τ for each agent in
the plan merging step.

69

A.6 Discussion and Future Work

In this paper, we address the problem of fully cooperative multiple agents high-level planning
problems in deterministic environments. We focus on problems where interactions between
agents are symmetric and sparse, and present a framework for representing all interactions as
soft cooperation constraints (SCC). This framework enables a compact representation of temporal
constraints and can be further extended and generalized to include more types of constraints.
Considering the SCC formulation, only those agents that are subject to the same cooperation
constraint are coupled, forming a dependency only in a specific context.

The SCC model presented is quite general and useful in practice, and can express constraints
used in realistic scenarios. The main use case is coordination of high-level actions among au-
tonomous agents. Example problems are the coordination of rescue or military forces, the Mars
rover exploration (discussed in [Becker et al., 2004]) or the coordinated target tracking (discussed
in [Kumar and Zilberstein, 2009]). We can extend several combinatorial optimization problems,
such as the vehicle routing problem (VRP) or the multiple traveling salesman problem, to in-
clude potential meetings between agents that provide additional rewards for the group. An
SCC can also express a conflict (or collision) constraint (specifically in multi-agent path finding
problems) by setting a positive or infinite interaction cost (see section A.2), and using the ex-
tended formulation presented in section A.5. In a similar way, we can also represent resource
constraints, such as ”use at most 1 of this resource at the same time”, by adding constraints to
states where the resource is used by agents.

Using this model, we are able to describe an efficient algorithm, DIPLOMA, which is
both complete and optimal. The proposed algorithm is a two-step algorithm: a dynamic
programming-based planning step and an optimization step.

In the first step, each agent plans independently and computes its response function to the
associated constraints with respect to interaction timing variables. We show non-trivial and
efficient algorithms for computation, which can also be distributed and parallelized. The time
complexity per agent strongly depends on the span of the time horizon and the number of
cooperation constraints relevant to this particular agent.

In the second step, we use a variable elimination algorithm on a factor graph to find the
optimal assignment to timing variables. The algorithm exploits the internal structure of the
problem and independence among agents to efficiently solve the min-sum optimization problem.

A theoretical time complexity analysis is presented, showing that the overall algorithm is
linear rather than exponential in the number of agents, polynomial in the span of the time
horizon, and dependent on the number of interactions among agents.

Simulations show that the algorithm is efficient compared to a standard solution and scales
well in the number of agents.

An immediate direction for future research is the extension to more expressive interaction
constraints, as discussed in section A.5. Other possible directions for future research include
generalizing the formulation of constraints by expanding the state and time domains of each
constraint, defining types of agents (rather than specific agents) in a constraint, approximate
methods for computing the response functions, and simulating a real-world large-scale MAP
problem.

70

Bibliography

Atzmon, D., Freiman, S. I., Epshtein, O., Shichman, O., and Felner, A. (2021). Conflict-free
multi-agent meeting. In Int. Conf. Automated Planning and Scheduling (ICAPS), pages 16–24.

Atzmon, D., Li, J., Felner, A., Nachmani, E., Shperberg, S. S., Sturtevant, N., and Koenig,
S. (2020a). Multi-directional heuristic search. In Int. Joint Conf. on Artificial Intelligence
(IJCAI), pages 4062–4068.

Atzmon, D., Zax, Y., Kivity, E., Avitan, L., Morag, J., and Felner, A. (2020b). Generalizing
multi-agent path finding for heterogeneous agents. In Int. Symp. on Combinatorial Search
(SOCS), pages 101–105.

Barer, M., Sharon, G., Stern, R., and Felner, A. (2014). Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem. In Int. Symp. on Combinatorial
Search (SOCS).

Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2004). Solving transition inde-
pendent decentralized markov decision processes. Journal of Artificial Intelligence Research,
22:423–455.

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In
Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge, pages
195–210. Morgan Kaufmann Publishers Inc.

Boyarski, E., Felner, A., Harabor, D., Stuckey, P. J., Cohen, L., Li, J., and Koenig, S. (2020).
Iterative-deepening conflict-based search. In Int. Joint Conf. on Artificial Intelligence (IJ-
CAI), pages 4084–4090.

Boyarski, E., Felner, A., Sharon, G., and Stern, R. (2015a). Don’t split, try to work it out: By-
passing conflicts in multi-agent pathfinding. In Int. Conf. Automated Planning and Scheduling
(ICAPS), pages 47–51.

Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., and Shimony, S. E.
(2015b). ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In Int.
Joint Conf. on Artificial Intelligence (IJCAI), pages 740–746.

Brafman, R. I. and Domshlak, C. (2008). From one to many: planning for loosely coupled
multi-agent systems. In Proceedings of the Eighteenth International Conference on Automated
Planning and Scheduling, pages 28–35.

71

Burkard, R. E., Dell’Amico, M., and Martello, S. (2009). Assignment Problems. SIAM.

Choudhury, S., Solovey, K., Kochenderfer, M. J., and Pavone, M. (2020). Efficient large-scale
multi-drone delivery using transit networks. In IEEE Int. Conf. Robotics and Automation
(ICRA), pages 4543–4550.

Cil, I. and Mala, M. (2010). A multi-agent architecture for modelling and simulation of small
military unit combat in asymmetric warfare. Expert Systems with Application, 37(2):1331–
1343.

Coltin, B. and Veloso, M. M. (2014). Online pickup and delivery planning with transfers for
mobile robots. In IEEE Int. Conf. Robotics and Automation (ICRA), pages 5786–5791.

Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K., Okada, K., Ro-
driguez, A., Romano, J. M., and Wurman, P. R. (2016). Analysis and observations from the
first Amazon picking challenge. IEEE Transactions on Automation Science and Engineering,
15(1):172–188.

Deb, S., Yeddanapudi, M., Pattipati, K., and Bar-Shalom, Y. (1997). A generalized sd assign-
ment algorithm for multisensor-multitarget state estimation. IEEE Transactions on Aerospace
and Electronic systems, 33(2):523–538.

Dresner, K. and Stone, P. (2008). A multiagent approach to autonomous intersection manage-
ment. Journal of Artificial Intelligence Research (JAIR), 31:591–656.

Felner, A., Li, J., Boyarski, E., Ma, H., Cohen, L., Kumar, T. K. S., and Koenig, S. (2018).
Adding heuristics to conflict-based search for multi-agent path finding. In Int. Conf. Auto-
mated Planning and Scheduling (ICAPS), pages 83–87.

Felner, A., Stern, R., Shimony, S. E., Boyarski, E., Goldenberg, M., Sharon, G., Sturtevant,
N. R., Wagner, G., and Surynek, P. (2017). Search-based optimal solvers for the multi-
agent pathfinding problem: Summary and challenges. In Int. Symp. on Combinatorial Search
(SOCS), pages 29–37.

Fioretto, F., Pontelli, E., and Yeoh, W. (2018). Distributed constraint optimization problems
and applications: A survey. Journal of Artificial Intelligence Research, 61:623–698.

Gebser, M., Obermeier, P., Otto, T., Schaub, T., Sabuncu, O., Nguyen, V., and Son, T. C.
(2018). Experimenting with robotic intra-logistics domains. Theory and Practice of Logic
Programming (TPLP), 18(3-4):502–519.

Guestrin, C., Koller, D., and Parr, R. (2002). Multiagent planning with factored mdps. In
Advances in neural information processing systems, pages 1523–1530.

Hönig, W., Kiesel, S., Tinka, A., Durham, J. W., and Ayanian, N. (2018). Conflict-based search
with optimal task assignment. In Int. Conf. on Autonomous Agents and MultiAgent Systems
(AAMAS), pages 757–765.

72

Hönig, W., Kumar, T. K. S., Cohen, L., Ma, H., Xu, H., Ayanian, N., and Koenig, S. (2016).
Multi-agent path finding with kinematic constraints. In Int. Conf. Automated Planning and
Scheduling (ICAPS), pages 477–485. AAAI Press.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103.

Kitano, H. and Tadokoro, S. (2001). Robocup rescue: A grand challenge for multiagent and
intelligent systems. Artificial Intelligence, 22(1):39–52.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, MA.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97.

Kumar, A. and Zilberstein, S. (2009). Constraint-based dynamic programming for decentralized
POMDPs with structured interactions. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS.

Larrosa, J. and Dechter, R. (2003). Boosting search with variable elimination in constraint
optimization and constraint satisfaction problems. Constraints, 8(3):303–326.

Li, J., Gange, G., Harabor, D., Stuckey, P. J., Ma, H., and Koenig, S. (2020). New techniques for
pairwise symmetry breaking in multi-agent path finding. In Int. Conf. Automated Planning
and Scheduling (ICAPS), pages 193–201.

Li, J., Harabor, D., Stuckey, P. J., and Koenig, S. (2021). Pairwise symmetry reasoning for
multi-agent path finding search. Computing Research Repository (CoRR), abs/2103.07116.

Li, J., Harabor, D., Stuckey, P. J., Ma, H., and Koenig, S. (2019). Disjoint splitting for multi-
agent path finding with conflict-based search. In Int. Conf. Automated Planning and Schedul-
ing (ICAPS), pages 279–283.

Liu, M., Ma, H., Li, J., and Koenig, S. (2019). Task and path planning for multi-agent pickup
and delivery. In Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS), pages
1152–1160.

Loeliger, H.-A. (2004). An introduction to factor graphs. IEEE Signal Processing Magazine,
21(1):28–41.

Ma, H., Harabor, D., Stuckey, P. J., Li, J., and Koenig, S. (2019). Searching with consistent
prioritization for multi-agent path finding. In AAAI Conf. on Artificial Intelligence, pages
7643–7650.

Ma, H. and Koenig, S. (2016). Optimal target assignment and path finding for teams of agents.
In Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS), pages 1144–1152.

73

Ma, H., Koenig, S., Ayanian, N., Cohen, L., Hönig, W., Kumar, T. K. S., Uras, T., Xu, H.,
Tovey, C. A., and Sharon, G. (2017a). Overview: Generalizations of multi-agent path finding
to real-world scenarios. Computing Research Repository (CoRR), abs/1702.05515.

Ma, H., Li, J., Kumar, T. K. S., and Koenig, S. (2017b). Lifelong multi-agent path finding
for online pickup and delivery tasks. In Int. Conf. on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 837–845.

Ma, H., Tovey, C. A., Sharon, G., Kumar, T. K. S., and Koenig, S. (2016). Multi-agent path
finding with payload transfers and the package-exchange robot-routing problem. In AAAI
Conf. on Artificial Intelligence, pages 3166–3173.

Melo, F. S. and Veloso, M. (2011). Decentralized MDPs with sparse interactions. Artificial
Intelligence.

Murray, C. C. and Raj, R. (2020). The multiple flying sidekicks traveling salesman problem:
Parcel delivery with multiple drones. Transportation Research Part C: Emerging Technologies,
110:368–398.

Murty, K. G. (1968). Letter to the editor - an algorithm for ranking all the assignments in order
of increasing cost. Operations Research, 16(3):682–687.

Nair, R., Varakantham, P., Tambe, M., and Yokoo, M. (2005). Networked distributed pomdps:
A synthesis of distributed constraint optimization and pomdps. In AAAI, volume 5, pages
133–139.

Nissim, R., Brafman, R. I., and Domshlak, C. (2010). A general, fully distributed multi-agent
planning algorithm. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS.

Oliehoek, F. A., Spaan, M. T., Vlassis, N., and Whiteson, S. (2008). Exploiting locality of
interaction in factored dec-pomdps. In Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems, pages 517–524.

Oliehoek, F. A., Whiteson, S., and Spaan, M. T. (2012). Exploiting structure in cooperative
bayesian games. In Uncertainty in Artificial Intelligence - Proceedings of the 28th Conference,
UAI 2012.

Popp, R. L., Pattipati, K. R., and Bar-Shalom, Y. (2001). m-best sd assignment algorithm with
application to multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems,
37(1):22–39.

Revach, G. (2018). Planning for cooperative multiple agents with sparse interactions. Master’s
thesis, Technion - Israel Institute of Technology, Haifa, IL.

Revach, G., Greshler, N., and Shimkin, N. (2020). Planning for cooperative multiple agents with
sparse interaction constraints. In The online Proceedings of the 6th Workshop on Distributed
and Multi-Agent Planning (DMAP) at ICAPS 202, pages 48–56.

74

Salzman, O. and Stern, R. (2020). Research challenges and opportunities in multi-agent path
finding and multi-agent pickup and delivery problems. In Int. Conf. on Autonomous Agents
and MultiAgent Systems (AAMAS), pages 1711–1715.

Scharpff, J., Roijers, D. M., Oliehoek, F. A., Spaan, M. T., de Weerdt, M. M., et al. (2016).
Solving transition-independent multi-agent mdps with sparse interactions. In AAAI, pages
3174–3180.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R. (2012a). Conflict-based search for
optimal multi-agent path finding. In AAAI Conf. on Artificial Intelligence.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R. (2012b). Meta-agent conflict-based
search for optimal multi-agent path finding. In Int. Symp. on Combinatorial Search (SOCS).

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R. (2015). Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40–66.

Sharon, G., Stern, R., Goldenberg, M., and Felner, A. (2013). The increasing cost tree search
for optimal multi-agent pathfinding. Artificial Intelligence, 195:470–495.

Shome, R. (2021). Roadmaps for robot motion planning with groups of robots. Current Robotics
Reports, pages 1–10.

Silver, D. (2005). Cooperative pathfinding. In Artificial Intelligence and Interactive Digital
Entertainment, pages 117–122.

Spieksma, F. C. (2000). Multi index assignment problems: complexity, approximation, applica-
tions. In Nonlinear assignment problems, pages 1–12. Springer.

Stern, R., Sturtevant, N. R., Felner, A., Koenig, S., Ma, H., Walker, T. T., Li, J., Atzmon, D.,
Cohen, L., Kumar, T. K. S., Barták, R., and Boyarski, E. (2019). Multi-agent pathfinding:
Definitions, variants, and benchmarks. In Int. Symp. on Combinatorial Search (SOCS), pages
151–159.

Sturtevant, N. (2012). Benchmarks for grid-based pathfinding. Transactions on Computational
Intelligence and AI in Games, 4(2):144 – 148.

Surynek, P. (2020). Multi-goal multi-agent path finding via decoupled and integrated goal vertex
ordering. Computing Research Repository (CoRR), abs/2009.05161.

Švancara, J., Vlk, M., Stern, R., Atzmon, D., and Barták, R. (2019). Online multi-agent
pathfinding. In AAAI Conf. on Artificial Intelligence, volume 33, pages 7732–7739.

Torreño, A., Onaindia, E., Komenda, A., and Stolba, M. (2017). Cooperative multi-agent
planning: A survey. Computing Research Repository (CoRR), abs/1711.09057.

Wurman, P. R., D’Andrea, R., and Mountz, M. (2008). Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. Artificial Intelligence, 29(1):9–20.

75

Yu, J. and LaValle, S. M. (2012). Multi-agent path planning and network flow. In Workshop on
the Algorithmic Foundations of Robotics (WAFR), volume 86, pages 157–173.

Yu, J. and Rus, D. (2014). Pebble motion on graphs with rotations: Efficient feasibility tests
and planning algorithms. In Workshop on the Algorithmic Foundations of Robotics (WAFR),
volume 107 of Springer Tracts in Advanced Robotics, pages 729–746.

76

לסוכנים משימות להקצות כיצד בשאלה עוסקת אשר ההשמה בעיית – בבעיה נוסף לחלק מתייחסים אנו בנוסף,

באלגוריתם משתמשים אילוצים, עם אופטימיזציה כבעיית ההשמה בעיית את לנסח מציעים אנו מיטבית. בצורה

ההשמה בעיית פתרון את לשלב מנת על שיטות מספר ומציגים מקורבת, בצורה אותה לפתור מנת על קיים

המסלולים. תכנון בבעיית

אמפירי ניסוי של תוצאות מציגים אנו השונים, והשיפורים המוצע האלגוריתם של הביצועים את לבחון מנת על

גם משמשים משתמשים, אנו בהם הבחינה תרחישי שונים. בתרחישים האלגוריתם של בחינה הכולל מקיף,

יכולתו ואת האלגוריתם, יעילות את בוחנים אנו זו ובצורה הקלאסי, התכנון בעיית לפתרון אלגוריתמים לבחינת

וגדלות. הולכות בעיות לפתור

בעיית של למודל חשובות הרחבות ומספר לאלגוריתם, ושיפורים הרחבות מספר מציעים אנו העבודה, בסיכום

האמיתי. בעולם נוספות בעיות לייצג תאפשרנה אשר השיתופי, התכנון

ii

תקציר

מעתה (תיקרא מרובים לסוכנים השיתופי המסלול תכנון בעיית את וחוקרים מציגים אנו זו, מחקר בעבודת

(תיקרא מרובים לסוכנים המסלול תכנון לבעיית הרחבה מהווה זו בעיה השיתופי"). התכנון "בעיית בקיצור

מפורשת. בצורה הסוכנים בין שיתופית התנהגות עליה ומוסיפה הקלאסית"), התכנון "בעיית בקיצור מעתה

משותפת. בסביבה ונעים פועלים כולם אשר אוטונומיים סוכנים של בקבוצה עוסקת הקלאסית התכנון בעיית

מסוימת, יעד לנקודת מסוימת מוצא מנקודת להגיע בקבוצה סוכן כל על שכן במהותה, שיתופית היא זו בעיה

בסביבה פועלים אשר סוכנים האמיתי, בעולם רבות בבעיות אולם, הקבוצה. הסוכנים ביתר להתנגש מבלי

התכנון בעיית במסגרת לפיכך, ומגבלות. יכולות של שונה סט ישנם סוכן שלכל במובן הטרוגניים, הם משותפת

במניעת רק תלויה אינה משימותיהם, את ולהשלים ליעדם להגיע סוכנים של היכולת זו, בעבודה המוצגת השיתופי

פשוטות, במילים השונים. הסוכנים ופעולות החלטות של (קואורדינציה) בתיאום גם אלא סוכנים, בין התנגשויות

את להשיג מנת על מפורשת בצורה לזה זה יעזרו אלא לשני, אחד יפריעו" "לא רק לא שסוכנים מעוניינים אנו

אמיתי. שיתופי תרחיש זאת מכנים אנו מטרתם.

ידי על שיתופיות משימות להשלים ועליהם משותפת, בסביבה פועלים אוטונומיים סוכנים של קבוצה זה, בתרחיש

שיתופיות, משימות להשלים מנת על בקבוצה. אחרים סוכנים עם מהתנגשויות נמנעים שהם ותוך פעולה, שיתוף

זו בעיה בלבד. התנגשויות למניעת מעבר יותר גבוהה ברמה החלטותיהם את ולתאם פעולה לשתף הסוכנים על

נדרשים אנו בו הקלאסית, התכנון בבעיית הקיים החישובי לסיבוך מעבר מורכב, חישובי סיבוך בחובה טומנת

השונים. הסוכנים בין התנגשויות ולמנוע בקבוצה, סוכן לכל מסלולים למצוא

סוכנים בהן האמיתי, בעולם רבות לבעיות טבעי מודל משמשת השיתופי התכנון בבעיית המוצעת ההרחבה

בעיית את לייצג מתמטי מודל מציעים אנו לפיכך, משימות. להשלים כדי פעולה לשתף נדרשים שונים מסוגים

של סוגים שני קיימים , המוצע במודל הקלאסי. התכנון בעיית של מודל על מבוסס אשר השיתופי, התכנון

הסוכנים שני בין הפעולה שיתוף אחת. משימה על פעולה בשיתוף עובד סוג) מכל (אחד סוכנים זוג וכל סוכנים,

אשר במחסן רובוטים של מתרחיש מוטיבציה ושואב וזמן), (מקום ביניהם פגישות בקביעת ביטוי לידי בא

המשימה. את להשלים באפשרותם הסוכנים, בין החבילה העברת ידי על רק לשני. מאחד חבילה מעבירים

קודם אלגוריתם על המבוסס קונפליקטים", מבוסס שיתופי "חיפוש אלגוריתם מציעים אנו זה, מודל על בהתבסס

האלגוריתם אופטימאלית. בצורה הקלאסי התכנון בעיית את פותר אשר קונפליקטים", מבוסס "חיפוש בשם

לתכנון מיוחד במודול משתמש הוא שיתופי. תכנון בעיות של מאוד רחב סט אופטימאלית בצורה פותר המוצע

ומפריד קונפליקטים"), מבוסס ("תכנון המקורי האלגוריתם בתוך משולב אשר הסוכנים, בין הפעולה שיתופי

התנגשויות. ומניעת עצמם המסלולים לתכנון סוכנים), זוג לכל מפגש נקודות (קביעת הפעולה שיתופי תכנון בין

לבצע מנת על הצורך, לפי נוספות מפגש נקודות ומייצר משימה, לכל מיטבית מפגש נקודת מחשב האלגוריתם

שיפורים, שני מציעים אנו השיתופי, התכנון אלגוריתם פעולת את לשפר כדי הפתרונות. במרחב יעיל חיפוש

זמן במסגרת לפתור מצליח הוא אותם התרחישים אחוז את מעלים ובכך שלו הריצה זמני את מורידים אשר

נתונה.

i

למדעי מהפקולטה זלצמן אורן וד"ר חשמל, להנדסת מהפקולטה שימקין נחום פרופ' של בהנחייתם בוצע המחקר

המחשב.

במהלך ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת

Nir Greshler, Ofir Gordon, Oren Salzman, and Nahum Shimkin. Cooperative multi-agent path finding:
Beyond path planning and collision avoidance. Accpeted to the 3rd IEEE International Symposium
on Multi-Robot and Multi-Agent Systems (MRS), 2021.

זו: מעבודה חלק מהווה אינו אך המסטר, תואר לימוד במהלך פורסם הבא המאמר

Guy Revach, Nir Greshler, Nahum Shimkin. Planning for Cooperative Multiple Agents with Sparse
Interaction Constraints. In he online Proceedings of the 6th Workshop on Distributed and Multi-Agent

Planning (DMAP) at ICAPS, pages 48-56, 2020.

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

מרובים לסוכנים שיתופי מסלול תכנון

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

חשמל בהנדסת למדעים מגיסטר

גרשלר ניר

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2021 אוקטובר חיפה התשפ"ב חשון

מרובים לסוכנים שיתופי מסלול תכנון

גרשלר ניר

	List of Figures
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Multi-Agent Path Finding (MAPF)
	2.1.1 Conflict-Based Search (CBS)
	2.1.2 Optimal CBS Variants
	2.1.3 Sub-optimal CBS Variants

	2.2 MAPF with Task Assignment
	2.3 Multi-Agent Pickup and Delivery (MAPD)
	2.4 Extensions to Classical MAPF

	3 Cooperative Multi-Agent Path Finding (Co-MAPF)
	3.1 Introduction
	3.2 Classical Multi-Agent Path Finding (MAPF)
	3.2.1 Problem input
	3.2.2 Actions
	3.2.3 MAPF conflicts
	3.2.4 MAPF solution
	3.2.5 Objective functions

	3.3 Formulating the Co-MAPF Problem
	3.3.1 Problem input
	3.3.2 Co-MAPF solution
	3.3.3 Co-MAPF objective functions

	3.4 Source-Connected Co-MAPF Instances

	4 Optimal Algorithm for Solving the Co-MAPF Problem
	4.1 Conflict-Based Search (CBS)
	4.2 Cooperative Conflict-Based Search (Co-CBS)
	4.2.1 Algorithm Overview
	4.2.2 Computing the Meetings Table
	4.2.3 Root Initialization
	4.2.4 Node Selection
	4.2.5 Root Node Expansion
	4.2.6 Conflicts Resolution

	4.3 Co-CBS Example
	4.4 Co-CBS Theoretical Analysis
	4.4.1 Co-CBS Completeness
	4.4.2 Co-CBS Optimality

	4.5 Improved Co-CBS: Prioritizing Conflicts and Lazy Expansion
	4.5.1 Prioritizing Conflicts (PC)
	4.5.2 Lazy Expansion (LE) of Root Nodes

	5 Task Assignment for Cooperative MAPF
	5.1 Assignment Problems
	5.1.1 Two-Dimensional Assignment Problems
	5.1.2 The Multi-Index Assignment Problem and the Axial 3-Index Assignment Problem
	5.1.3 Approximating the m-Best Solutions

	5.2 Cooperative Task Assignment as a 3-D Assignment Problem
	5.2.1 The Global Cooperation Cost Matrix

	5.3 Cooperative Conflict-Based Search with Task Assignment
	5.3.1 Single-Shot Task Assignment (Single-TA)
	5.3.2 Full Task-Assignment Search (Full-TA)

	5.4 Greedy Assignment Approach

	6 Experimental Evaluation
	6.1 Setup and Benchmarks
	6.2 Co-CBS Empirical Evaluation
	6.3 Co-CBS with Task Assignment

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Future Work
	7.2.1 Co-CBS Improvements and Extensions
	7.2.2 Extensions to the Co-MAPF Framework
	7.2.3 Task Assignment for Co-MAPF

	A Planning for Cooperative Multiple Agents with Sparse Interaction Constraints
	A.1 Introduction
	A.2 Model
	A.2.1 Interaction-Dependent Cost

	A.3 DIPLOMA - Distributed Planning and Optimization Algorithm for Multiple Agents
	A.3.1 Response Function Computation
	A.3.2 Plan Merging
	A.3.3 Complexity Analysis

	A.4 Experiments
	A.5 Extension to Asymmetric Interactions
	A.6 Discussion and Future Work

	Bibliography
	Hebrew Abstract

