
Cooperative Multi-Agent Path Finding:
Beyond Path Planning and Collision Avoidance

Nir Greshler, Ofir Gordon, Oren Salzman, and Nahum Shimkin

Abstract— We introduce the Cooperative Multi-Agent Path
Finding (Co-MAPF) problem, an extension to the classical
MAPF problem, where cooperative behavior is incorporated. In
this setting, a group of autonomous agents operate in a shared
environment and have to complete cooperative tasks while
avoiding collisions with each other. This extension naturally
models many real-world applications, where groups of agents
must work together to complete a given task. To this end, we
formalize the Co-MAPF problem and introduce Cooperative
Conflict-Based Search (Co-CBS), a CBS-based algorithm for
solving the problem optimally for a wide set of Co-MAPF
problems. Co-CBS uses a cooperation-planning module inte-
grated into CBS such that cooperation planning is decoupled
from path planning, while ensuring that paths obtained are
optimal. Finally, we present empirical results on several MAPF
benchmarks demonstrating our algorithm’s properties.

I. INTRODUCTION AND RELATED WORK

The Multi-Agent Path-Finding (MAPF) problem is a spe-
cial and important type of the more general Multi-Agent
Planning (MAP) problem [1]. In MAPF [2], the task is to
find paths for each agent in a group, from a start to a goal
location, where interactions between agents are restricted to
collision avoidance, as agents move in a shared environment.
While relevant to many real-world applications, such as
warehouse automation [3], autonomous vehicles [4], [5] and
robotics [6], recent research in the field has focused on
expanding the classical MAPF framework to fit more real-
world applications [7]–[9].

A main research direction towards the real-world applica-
bility of MAPF problems is the problem of lifelong MAPF,
also known as the Multi-Agent Pickup and Delivery (MAPD)
problem. In this problem, a group of autonomous agents
operate in a shared environment to complete a stream of
incoming tasks, each with start and goal locations, while
avoiding collisions with each others [10], [11]. A similar
problem, studied by Ma et al. [12] is the package-exchange
robot-routing problem (PERR) where payload exchanges and
transfers are allowed thus enabling the modelling of more
general transportation problems.

In this work, we introduce the Cooperative-MAPF (Co-
MAPF) framework, a MAPF extension, in which a group
of agents collaborate towards completing a cooperative task.
The classical MAPF problem is inherently cooperative, since
each agent has to arrive at its goal, without colliding with
other agents. However, in many real-world applications,

Nir Greshler and Nahum Shimkin are with Viterbi Faculty of Elec-
trical & Computer Engineering, Technion, Haifa, Israel. Ofir Gordon
and Oren Salzman are with Department of Computer Science, Technion,
Haifa, Israel. Emails: {nirgreshler,ofirgo}@campus.technion.ac.il, osalz-
man@cs.technion.ac.il, shimkin@ee.technion.ac.il.

agents that operate in a shared environment are often het-
erogeneous [13] and may have a different set of abilities
and restrictions. Therefore, in the Co-MAPF framework,
achieving goals and completing tasks may not depend only
on avoiding collisions between agents, but also on actively
coordinating their actions. Simply put, we may want agents
not just to “not interrupt” each other, but also help each other
achieve their goals. We term this a truly cooperative setting.

Our motivating problem is taken from the warehouse-
automation domain [3]. In this problem, storage locations
host inventory pods that hold goods of different kinds.
Robots operate autonomously in the warehouse, picking up
and carrying inventory pods to designated drop-off locations,
where goods are manually taken off the pods for packaging.
In this scenario, the robot’s main task is to transport the pods
around the warehouse, and we refer to robots executing such
tasks as transfer units. Research in a different, yet closely-
related area, has studied the problem of autonomous robotic
arms capable of picking-up a specific item from an inventory
pod [14]. We refer to a moving robot with such arm as a
grasp unit. This motivates the investigation of an improved
warehouse scenario, where robots of two types, grasp and
transfer units, can work together in coordination (for ex-
ample, by scheduling a meeting between them) to improve
some optimization objective. For instance, the number of
completed tasks for a given time period. This motivating
example is depicted in Fig. 1.

We incorporate a truly cooperative behavior to classical
MAPF by assigning cooperative tasks (rather than goals)
to agents, similar to (non-cooperative) tasks defined in the
MAPD literature [10], [11]. Agents cooperate in the context
of these cooperative tasks, and are only able to complete
tasks by coordinating their actions and goals with each other.

We suggest a formulation to the Co-MAPF problem which
is derived from the classical MAPF formulation [2]. In
addition, we discuss differences and further extensions to the
Co-MAPF framework which can be used towards achieving
more cooperative capabilities in a MAPF problem. In the
suggested formulation, presented in Section II, there is more
than one set of agents, possibly representing heterogeneous
real-world agents, and we specifically focus on the case
of two sets of agents. The cooperation between agents is
restricted to the form of meetings, where agents have to
schedule a meeting location and time to complete a task.
We also discuss other forms of agent interactions, and
generalizations to the suggested formulation. Besides the
aforementioned warehouse problem, more real-world prob-
lems can be modeled using the Co-MAPF framework, such

Fig. 1: Two pairs of robots operate in a warehouse–two grasp
units and two transfer units. Grasp unit #1 arrived at the task
start location, i.e., next to the shelf. It will pick up the box
and then drive to the meeting location (marked with a yellow
square) to transfer the box to transfer unit #1. The transfer
unit has a path (marked with blue arrows) to the meeting
point, and from there to the task goal (the P square), where
the box will be picked by a human employee. The second
pair of robots (#2) are at their meeting location.

as the involvement of aerial robots in fulfilment centers [15],
the truck-and-drone “last-mile” delivery problem [16] and
multi-drone delivery using transit networks [17].

Based on the suggested formulation, we introduce (in
Section III) Cooperative Conflict-Based Search (Co-CBS),
an optimal three-level algorithm that is heavily based on two
previously-suggested optimal algorithms: the well-known
Conflict-Based Search (CBS) [18] for solving a classical
MAPF problem and the Conflict-Based Search with Optimal
Task Assignment (CBS-TA) [19] for solving the anonymous
MAPF problem, where we also need to assign goals (or
tasks) to each agent. Finally, we introduce two improvements
to the basic version of Co-CBS.

For clarity of exposition, the description of our Co-CBS
algorithm is based on the original CBS algorithm which
has numerous extensions and improvements. Many of these
improvements can be immediately applied to Co-CBS, as
we discuss in Section VII.

A theoretical analysis of Co-CBS is presented in Sec-
tion IV where we discuss the conditions under which Co-
CBS is complete and prove that it is optimal. We present
empirical results of running Co-CBS on several MAPF
benchmarks and show that it solves nontrivial problem
instances (detailed in Section VI). We show that our two
suggested Co-CBS improvements significantly improve the
algorithm’s performance.

Finally, in Section VII we discuss some extensions and
research directions, specifically for Co-CBS, but more im-
portantly, general for the Co-MAPF framework.

II. BACKGROUND AND SETTING

We first describe and formulate the classical MAPF prob-
lem followed by a formulation of our proposed Cooperative-
MAPF (Co-MAPF) framework. Then, we define the objec-
tive function used in Co-MAPF.

A. Classical MAPF

In the classical MAPF problem [2], we are given an
undirected graph G = (V,E) whose vertices V corre-
spond to locations and whose edges E correspond to con-
nections between the locations that the agents can move
along. A = {a1, . . . , ak} is a set of k agents, each is provided
with a start and goal location, (si, gi) s.t. si, gi ∈ V .

Time is discretized and at each time step, each agent can
either move on the graph or wait at its current vertex. A
feasible MAPF solution is a set of paths P = {p1, . . . , pk}
such that pi is a path for agent ai from vertex si to vertex gi
and there are no conflicts between any two paths in P . We
consider two types of conflicts—a vertex conflict, in which
two agents occupy the same vertex at the same time step,
and an edge conflict (or swapping conflict), in which two
agents traverse the same edge from opposite sides (“swap
positions”) at the same time step. An optimal solution is
a feasible set of paths P which optimizes some objective
function (specifically defined in Section II-C).

B. Cooperative-MAPF (Co-MAPF)

We wish to incorporate cooperative behavior into the
classical MAPF problem. This is done by replacing agent
goals with a set of cooperative tasks, i.e., tasks that require
the cooperation and coordination of a group of agents in
order to be completed. Specifically, here we limit ourselves
to cooperative tasks (simply referred to as tasks in the rest of
this paper) that require pre-defined pairs of agents to work
together. We discuss possible extensions in Section VII.

In the Co-MAPF problem we are given an undirected
graph G = (V,E). The set of agents A consists of
two distinguishable sets, i.e., A = A ∪ B. Each set in-
cludes k agents of a specific type, namely A = {α1, . . . , αk}
and B = {β1, . . . , βk} (2k agents in total). The two types of
agents may differ in their traversal capabilities or possible
actions (for instance, picking up an object). We are also given
a set of tasks T = {τ1, . . . , τk} s.t. each task τi is assigned
to a pair of agents (αi, βi). We refer to αi and βi as the
initiator and executor agents, respectively. Each task τi ∈ T
is defined by a start location si and a goal location gi.

Each agent has a unique start location given by a func-
tion V0 : A→ V s.t. V0 (a) is the location of agent a at
time step 0. An agent’s goal is not directly given but
rather derived from its assigned task. In our setting, a
task τi = (si, gi) for agents (αi, βi) is composed of the
following steps: (i) moving the initiator agent αi to the
task’s start location si, (ii) moving both agents to a so-
called meeting mi = (vmi , t

m
i) where vmi ∈ V is the meeting

location and tmi is the meeting time step, both of which are
computed by the algorithm (and not specified by the task1),
(iii) moving the executor agent to the task’s goal location gi.
For a visualization, see Fig. 1. Note that a meeting (vmi , t

m
i)

is defined using a single vertex vmi , which means that both
agents arrive at the same location at the same time, and this

1Note that a meeting mi is defined by its location and time. Thus, when
referring to a meeting, we mean both.

is not considered a collision in our setting. This represents a
scenario where the two robots meet following some special
rendezvous protocol (see robots #2 in Fig. 1), allowing them
to be at the same location without colliding. We may also
define a meeting using a pair of adjacent vertices, i.e. vmi,α
and vmi,β where each agent has its own meeting location,
similar to [20]. This extension is discussed in Section VII.

Formally, a solution to a Co-MAPF instance is a set
of paths pairs P =

{
(pα1 , p

β
1), . . . , (p

α
k , p

β
k)
}

s.t. for each

pair 1 ≤ i ≤ k, pαi , p
β
i start in V0 (αi) and V0 (βi), respec-

tively. Path pαi goes through si at some time step ti, and both
paths contain a meeting at vertex vmi at the same time tmi
s.t. ti ≤ tmi . Finally, pαi ends in vertex vmi at time tmi and pβi
ends in vertex gi. Similarly to classical MAPF, in order for a
solution to be feasible, there should be no conflicts between
the paths in P , with the exception that the paths of agents
sharing a task intersect at their meeting point.

C. Objective functions for Cooperative MAPF

Arguably, the most common objective functions used in
classical MAPF to evaluate solutions are makespan (MKSP)
and sum-of-costs (SOC) [2], both to be minimized. MKSP is
defined as the number of time steps required for all agents
to reach their target, while SOC is the sum of time steps
required by each agent to complete all tasks. In this paper
we focus on the SOC objective, which is, arguably, more
natural for our setting—it implicitly minimizes both the time
it takes to complete a task, and the time the initiator finishes
its part in the task. We note that all results presented can be
applied to the MKSP objective as well. The sum of costs of P
is defined as

∑
1≤i≤k |pαi |+ |p

β
i |. Wait actions are counted

until an agent finishes its plan (i.e., after the meeting for αi
and after arriving at gi for βi).

III. COOPERATIVE CONFLICT-BASED SEARCH

We now present the Cooperative Conflict-Based Search
(Co-CBS) algorithm, a three-level optimal planning algo-
rithm for solving Co-MAPF problem instances. As our
suggested algorithm is based on CBS [18], we start with a
brief description of it. CBS is a two-level search algorithm.
The high-level performs a best-first search over a so-called
constraint tree (CT). Each CT node consists of a solution,
its cost and a set of constraints. CBS finds conflicts in
the solution and resolves them by imposing constraints on
agents. A constraint is either a vertex constraint (a, v, t),
or an edge constraint (a, u, v, t). The low-level constructs
paths for each individual agent while satisfying the imposed
constraints. CBS resolves conflicts by splitting a CT node
and introducing an additional constraint for each agent
participating in the conflict at the lower level.

We now continue with an overview of Co-CBS (depicted
in Fig. 2 and outlined in Algorithm 1). We then continue
with lower-level details.

1) Algorithm overview: Co-CBS is a search algorithm
based on CBS that considers the cooperative aspect of
the problem. More specifically, Co-CBS consists of three
levels of search in three different spaces (similar to [19]

Algorithm 1 Cooperative Conflict-Based Search (Co-CBS)

1: Input: G,A,B,V0, T . Co-MAPF problem instance
2: Returns: optimal path for each agent
3: for all τi ∈ T do . using Algorithm 2 for each task
4: Ti ← compute meetings table(τi, αi, βi)

5: R = new node
6: R.constraints← ∅
7: R.meetings← get the initial set of optimal meetings
8: R.root← True
9: R.solution← plan paths() . to and from meetings

10: R.cost← compute cost(R.solution)
11: insert R to OPENROOTS
12: while OPEN not empty or OPENROOTS not empty do
13: N ← lowest cost node from OPEN∪OPENROOTS
14: Validate the path in N until a conflict occurs
15: if N has no conflicts then
16: return N.solution . N is goal
17: if N.root is True then
18: expand root(N) . using Algorithm 3
19: C ← first conflict (ai, aj , v, t) in N
20: for all agent ai in C do
21: A← new node
22: A.constraints← N.constraints+ (ai, v, t)
23: A.meetings← N.meetings
24: A.root← False
25: A.solution← N.solution
26: Update A.solution by invoking plan paths(ai)
27: A.cost← compute cost(A.solution)
28: Insert A to OPEN

and [21]): (i) the meetings space, (ii) the conflicts space and
(iii) the paths space. The meetings space contains all possible
combinations of meetings, one for each task. We’ll refer to
the three levels of search as the meetings level, conflicts level
and paths level, respectively.

Co-CBS simultaneously searches over all possible meet-
ings and for each meeting, over all possible paths. To perform
this search in a systematic and efficient manner, we need to
consider an ordering of the meetings. Indeed, in Equation 1
we define a meeting’s cost which is dependent both on the
meeting’s location and time. To efficiently traverse the set
of possible meetings, we introduce the notion of a Meetings
Table which stores for each meeting location the currently-
best meeting time. As we will see, this table will allow us
to iterate over all meetings in a best-first manner.

In contrast to CBS that constructs a single constraint
tree (CT), Co-CBS creates a forest of CTs, similar to [19].
Each CT starts in a root node and corresponds to a specific
set of meetings (a specific meeting for each task). In Co-
CBS, each CT node has two additional fields (when com-
pared to CBS): root specifies if the node is a root or a regular
node and meetings specifies the current set of meetings (one
for each task) which is used during the path-level search.

Co-CBS starts with a single root node, with the minimum-
cost set of meetings (see Equation 3), while ignoring possible

conflicts between agents. In each iteration, Co-CBS selects a
lowest-cost node from the OPEN list (either a root or regular
node), in a best-first approach similar to CBS. Whenever a
root node is selected, in addition to splitting the tree due to
a conflict, Co-CBS also expands it in the meetings space
by generating the next best sets of meetings. Namely, new
root nodes are created only on demand. For each expanded
node, given its set of meetings and constraints, the paths
level computes a solution by planning the different steps a
task solution is composed of (Section II-B).

2) Computing the Meetings Table: We denote the cost of
a meeting mi = (vmi , t

m
i) as Ci(vmi , t

m
i). Ci is given for the

SOC objective, by

Ci(v, t) =

{
2 · t+ d (v, gi) , t ≥ t∗i (v)

∞, otherwise , (1)

where t∗i (v) is the earliest possible meeting time at v for
task τi, i.e., the earliest time both assigned agents can arrive
at v. Specifically, t∗i (v) is defined as

t∗i (v) = max {d (V0 (αi) , si) + d (si, v) ,

d (V0 (βi) , v)} ,
(2)

where d(u, v) is the length of the single-agent shortest path
from u to v. If d(u, v) =∞, no such path exists.

The first step of Co-CBS is to compute Ti, the meetings
table for each task τi (lines 3-4 in Alg. 1). The meetings
table is a function Ti : V → R ∪ {∞} that returns for each
vertex v ∈ V the cost for completing task τi with a meeting
in v at the earliest possible time. Ti (v) is initialized for
each v ∈ V with Ti (v) = Ci(v, t

∗
i (v)). Each meetings table

is stored as a heap which allows for update and getMin
operations in O(log |V |). These operations are used during
the root node expansion which will be described shortly.

We compute Ti (v) for all v ∈ V in polynomial time using
A* and Dijkstra’s algorithm as described in Algorithm 2.
Computing the meetings table for each task τi requires
finding paths from every node v ∈ V to the agents’ start
locations, as well as tasks’ start and goal locations.

3) Root initialization: We define the cost
of a set of meetings M = {m1, . . . ,mk} as
follows: C (M) =

∑k
i=1 Ci (v

m
i , t

m
i). M∗ is a set of

meetings that minimizes the problem objective while
ignoring possible conflicts between agents. Namely,

M∗ ∈ argmin
M

C (M). (3)

Co-CBS’s search starts with creating the initial CT root
node with an empty set of constraints, and a minimal-cost
set of meetings M∗, by choosing a lowest-cost meeting for
each task from the meeting tables (lines 5-8). Given M∗,
the paths level is called to compute individual paths for each
agent (line 9). This is similar to CBS, except that in the
path-level search we plan for each task τi in parts: (i) for αi
from V0 (αi) to si, and then from si to vmi at time tmi , and
(ii) for βi from V0 (βi) to vmi at time tmi and then to gi. Note
that when planning for a meeting, we should consider both
the meeting location and time. The initial CT root node cost
is computed and it is inserted to the OPEN list (lines 10-11).

Algorithm 2 Compute Meetings Table

1: Input: A Task τi and two assigned agents αi and βi
2: Returns: Ti, the meetings table for task τi
3: Compute d (V0 (αi) , si) . initiator start to task start
4: Compute d (si, v) ,∀v ∈ V . task start to all
5: Compute d (V0 (βi) , v) ,∀v ∈ V . executor start to all
6: Compute d (v, gi) ,∀v ∈ V . task goal to all
7: for all v ∈ V do
8: Calculate t∗i (v) . earliest meeting time in v
9: Calculate Ti (v) . task cost with meeting at v

10: Store (v, t∗i (v) , Ti (v)) in table

Algorithm 3 Expand root

1: Input: Meetings tables of all tasks, a root node P
2: for all τi ∈ T do . loop over all tasks
3: R = new node
4: R.constraints = ∅
5: R.meetings = P.meetings
6: R.meetings[τi] = get next meeting(Ti)
7: R.root = True
8: Update R.solution by invoking plan paths(αi, βi)
9: R.cost = compute cost(R.solution)

10: insert R to OPENROOTS

4) Selecting a node for expansion: As long as there are
nodes in the OPEN list (line 12), we follow CBS’s best-
first search approach and select a node with a lowest cost
(line 13). If the OPEN list contains both root and regular
nodes with the same lowest cost, Co-CBS chooses to expand
a regular node (to perform this in practice, Co-CBS keeps
root and regular nodes in two separate OPEN lists).

5) Expanding a root node: After selecting a lowest-cost
node N from the OPEN list, Co-CBS checks for conflicts in
its solution (line 14). If none are found, N.solution is re-
turned as the optimal solution (lines 15-16). Otherwise, if N
is a root node, it is expanded to get its successors in the meet-
ings space (lines 17-18). The process of expanding a root
node is described in Algorithm 3. Given the current set of
meetings (in the expanded root node) M = {m1, . . . ,mk},
Co-CBS generates up to k new sets of meetings, one for
each task. This is done in a non-decreasing manner, by
replacing one meeting mi ∈M at a time, an idea similar to
the Increasing Cost Tree Search (ICTS) [22] algorithm, thus
creating k new root nodes.

To get the next-best meeting for task τi, we have to
search both for different locations and time steps in the
meetings space. The meetings table Ti of τi initially consists
of meetings at each possible location, at the earliest time
possible. Each time Co-CBS invokes the get-next-meeting
procedure for τi (line 6 in Algorithm 3), it returns the lowest-
cost meeting mi = (vmi , t

m
i) from Ti. The table is then

updated so that it holds the next lowest-cost meeting. This
is done by updating Ti (v

m
i) = Ci (v

m
i , t

m
i + 1). Namely,

updating the cost of meeting at vmi , but at time tmi + 1 rather
than tmi . The next time the get-next-meeting procedure is
invoked, the next best meeting will be returned by the table.

α1

β1

α2

β2

s1 g1

s2

g2

0 1 2 3

0

1

2

3

(a) Example instance with two tasks: α1 and β1
execute τ1 from s1 to g1 and α2 and β2
execute τ2 from s2 to g2.

in at
in at

in at
in at

in at
in at

,

1 23

(b) Co-CBS search forest.

Fig. 2: Example execution of Co-CBS (b) on the instance depicted in (a). Root and regular nodes are denoted with R
and N , respectively. The initial root node R1 contains the optimal set of meetings, has a cost of 13 and a conflict at t = 1. It
is expanded to root nodes R2, R3 (with cost 14) and split on its first conflict, creating N1, N2. N2 has no solution, thus N1

will be chosen next for expansion, creating N3, N4, both with no solution. In the next iterations, Co-CBS will expand R2

(to R4, R5, N5, N6), then N5, and finally R3. Since R3 has no conflicts, it will be returned as a feasible optimal solution.

Subsequently, a new path is planned for the pair of agents
whose meeting changed, the new CT node cost is computed
and it is inserted into the OPEN list.

6) Resolving a conflict: The last part of the algorithm is
almost identical to CBS: when expanding a node N (either
root or regular) Co-CBS splits its CT and creates a regular
node for each agent by the first conflict found (lines 19-28).
These nodes has the same set of meetings as N (line 23).

IV. THEORETICAL ANALYSIS

A. Co-CBS Completeness

In the classical MAPF setting, it is possible to check
whether an instance is solvable in polynomial time [23].
In the Co-MAPF setting, given a set of meeting locations,
we may decompose the problem into two MAPF instances
and check that both are solvable. However, Co-CBS also
searches for different meeting locations (and times), which
means that agents’ (intermediate) goals are determined dur-
ing the search and not pre-defined. Therefore, to ensure
completeness we define source-connected instances:

Definition 4.1 (source-connected instances): A source-
connected Co-MAPF instance is an instance in which for
each task τi, the following paths exist: (i) V0 (αi)→ si, (ii)
V0 (βi) → si, and (iii) si → gi, and none of them pass via
an agent’s start location.

Lemma 4.1: A source-connected Co-MAPF instance is
solvable.

Proving this lemma is straightforward by sequentially
planning each agent. We therefore omit the proof. By using
the notion of source-connected Co-MAPF instances, we
are able to guarantee Co-CBS’s completeness while still
solving a very wide and realistic set of problem instances.
Investigating Co-CBS’s completeness in the more general
case is left for future research. For simplicity, we also assume
similar to [24], a disappear-at-target behavior [2]. More

specifically, the initiator agent disappears after the meeting,
and the executor agent disappears after completing the task
(at the task goal location). Note that the following proofs still
work without this assumption. A more interesting scenario
is where agents are assigned with new tasks upon finishing
their part, commonly known as the lifelong planning problem
as discussed in Section VII.

We start with the following lemma.
Lemma 4.2: The get-next-meeting procedure performs an

exhaustive non-decreasing search in the meetings space.
Proof Sketch: Denote n as the number of times

get-next-meeting has been invoked. For n = 1, because of
how Ti is initialized, get-next-meeting returns the meeting
location and time with lowest cost. Assume by induction,
that the n−th time get-next-meeting is invoked, it returns
the n−th best meeting in the location-time space. Denote this
meeting location and time v̂n and t̂n, respectively. Denote
the total cost of both agents using this meeting ĉn. After
the n−th invocation, Ti is updated such that the meeting
at v̂n is at time (t̂n + 1) and costs (ĉn + 2) (for the SOC
objective, since we add a time step for each agent). Ti
is then sorted by the meetings costs. This means that in
the (n+1)−th invocation of get-next-meeting, it will return
the n+ 1-th best meeting (with cost ≤ (ĉn + 2)).

Theorem 4.3: Co-CBS will return a solution for any
source-connected Co-MAPF instance.

Proof Sketch: By Lemma 4.1 we know that there
exists a solution. Denote the set of meetings in this
solution by M = {(vm1 , tm1) , (vm2 , t

m
2) , . . . , (vmk , t

m
k)}. By

Lemma 4.2 we know that during the search, Co-CBS will
create a root node, denoted by RM, whose set of meetings
is M. There exists a feasible solution such that each pair
of agents (αi, βi) meet at (vmi , t

m
i). By the completeness

of CBS it is guaranteed that the search from the CT root
node RM will eventually find the solution.

By Theorem 4.3, Co-CBS is complete for source-
connected Co-MAPF instances. However, Co-CBS will also
solve most instances where this assumption doesn’t hold,
without a completeness guarantee.

B. Co-CBS Optimality

We show that Co-CBS returns an optimal solution for
every solvable Co-MAPF instance.

Lemma 4.4: LetM be a set of meetings with C (M) = c
and let N be a CT node with cost larger than c. Co-
CBS will generate a root node corresponding to M before
expanding N .

Proof Sketch: Assume that there exists a set of meet-
ings M s.t. C(M) = c, that hasn’t been generated yet.
Assume by contradiction that Co-CBS expands a node N
with a solution cost c′ > c. By definition, the first generated
set of meetings M∗ (line 7 in Algorithm 1) induces a
solution which minimizes the SOC objective function. This
implies that the cost of completing all tasks in the (possibly
infeasible) solution induced byM∗ is less than or equal to c.
The cost of completing all tasks in the (possibly infeasible)
solution induced byM is equal to c. By Lemma 4.2 we know
that each set of meetings generated betweenM∗ andM has
a cost smaller or equal to c. Furthermore, there must be at
least one root node in the OPEN list consisting of one of
these meeting sets. Therefore, there exists a root node that
hasn’t been expanded yet in the OPEN list with a cost smaller
than c′, in contradiction to the best-first search approach
which chose node N with a larger cost for expansion.

Theorem 4.5: Co-CBS returns an optimal solution for
any solvable Co-MAPF instance.

Proof Sketch: Assume that there exists an optimal
solution with some cost c∗. Co-CBS performs a CBS-like
search on each generated CT, namely, it searches through
a forest of constraint trees. By Lemma 4.4 we get that the
cost of each expanded root node of each CT constitutes a
lower-bound on c∗. From the optimality guarantees of CBS,
we get that any node expanded in each of those CTs (i.e.,
regular nodes) is also a lower bound on c∗. Due to Co-CBS’s
best-first approach, it won’t expand a node with a cost larger
than c∗ before completing a search through all possible CT
nodes with cost c∗ (by expanding neither a root node nor a
regular one). Since there exists a solution with such cost, and
the number of possible solutions with a specific cost is finite,
Co-CBS will eventually expand a node with an optimal and
feasible solution and return it.

V. CO-CBS IMPROVEMENTS

In Section III, we introduced the basic version of Co-CBS
for solving the Co-MAPF problem. Co-CBS creates a forest
of constraint trees and runs CBS on each tree. Thus, we can
apply previously-suggested CBS improvements to Co-CBS.
One such improvement that has been shown to significantly
decrease CBS’s run-time is prioritizing conflicts (PC) [25].
In this section we present in detail the application of PC
to Co-CBS. More CBS improvements are discussed in Sec-
tion VII. In addition, we introduce a unique improvement for

Co-CBS called Lazy Expansion (LE), which exploits special
characteristics of root nodes. Both improvements keep Co-
CBS optimal, while introducing a significant improvement
in run time, as shown empirically in Section VI.

A. Prioritizing Conflicts (PC) for Co-CBS

The Improved CBS (ICBS) algorithm [25] introduced an
enhancement to CBS by defining rules dictating how to split
the CT. In particular, conflicts are divided into three types:
cardinal, semi-cardinal and non-cardinal. Cardinal conflicts
always cause an increase in the solution cost, therefore ICBS
chooses to split cardinal conflicts first. Cardinal conflicts are
identified by examining the width of a multi-value decision
diagram (MDD) [22], which is constructed for each low-level
path found. The MDD is a directed a-cyclic graph which
compactly stores all possible paths of a given cost c for a
given agent, from its start vertex to its goal vertex. An MDD
of cost c consists of c layers, corresponding to c time steps.

Applying PC to Co-CBS is not straightforward, since an
MDD stores paths from a start vertex to a goal vertex, while
in Co-MAPF paths are constrained to ensure cooperation
between agents. More specifically, in our Co-MAPF setting,
each agent has an intermediate goal, i.e., the task start
location, or the meeting location (at a specific time). We
therefore need to modify the way an MDD is constructed,
and indeed we suggest a method for efficiently doing so for
both agents.

For the initiator agent, we must ensure it passes through
the task’s start location. In other words, we need to prune
MDD nodes that are not part of any of the agent’s paths
which pass the task’s start location. We refer to such nodes as
invalid nodes. Constructing an MDD efficiently is done using
two breadth-first searches–one forward and one backward
(start to goal and vise versa) [22]. In order to efficiently prune
invalid nodes, we follow the following procedure: during the
forward search, we mark MDD nodes corresponding to the
task start location and all their descendants as valid forward.
Similarly, during the backward search, we mark these nodes
and all their ancestors as valid backward. Finally, all MDD
nodes that are not marked with either flags are pruned.

For the executor agent, constructing the MDD requires
only slight changes. We need to constrain the agent to be
at the meeting’s location at the meeting’s time. We simply
do it by eliminating all other nodes from the MDD layer
corresponds to the meeting time during the forward pass in
the MDD construction.

B. Lazy Expansion (LE) of root nodes

Co-CBS searches the meetings space by creating root
nodes, each corresponding to a unique set of meetings. Note
that since no constraints are imposed on paths of root nodes,
their cost is given as an aggregation of their meeting costs.
Furthermore, meeting costs are computed a-priori during the
construction of meeting tables (see Section III). This means
that when a root node is expanded, and new root nodes are
created, they can immediately be inserted into the OPEN list
without computing their low-level paths. The low-level paths

will be computed only when these root nodes are extracted
from the OPEN list. We term this Lazy Expansion (LE).

Each time a root node is expanded, it creates k new root
nodes by replacing the meeting of each of the tasks. We
emphasize that while generating those nodes is mandatory
in order to guarantee optimality, most of them won’t be
expanded. Thus, the run-time saved by LE can be significant

VI. EXPERIMENTAL EVALUATION

Co-CBS solves the newly introduced Co-MAPF problem.
To the best of our knowledge, there does not exist an off-
the-shelf optimal solver for MAPF problems involving co-
operative behavior. Suggesting a centralized A*-based imple-
mentation for solving the Co-MAPF problem is challenging
due to constraints imposed on low-level paths to achieve
cooperation. Such approach would require to perform a
search in the meetings space, resulting in an exponentially-
large state space. Moreover, an attempt to solve Co-MAPF
using such implementation would yield similar results as
solving classical MAPF problem using A* [18], due to their
similar search approach and conflict-resolution mechanism.
However, we do compare Co-CBS with a baseline priori-
tized planning algorithm. The baseline algorithm plans for
each agent independently, considering the paths of previous
agents, and using the optimal meeting location. Thus, it runs
very fast, albeit it is sub-optimal.

To measure the quality of Co-CBS, we present the
results of an empirical evaluation performed on standard
MAPF benchmarks [2], [26] showing the performance of
the basic version of Co-CBS, as well as the two suggested
improvements (see Section V). Co-CBS is implemented
in C++2 and is based on the implementation of Li et
al. [27]. All simulations were performed on an Intel Xeon
Platinum 8000 @ 3.1Ghz machine with 32.0 GB RAM.

A. Benchmarks and setup

We evaluated Co-CBS on several 2D grid-based bench-
marks. Specifically, we tested Co-CBS on different types of
maps—a dense game map (DAO, den312d), random map
(random-32-32-20), a large warehouse (warehouse-10-20-
10-2-1) and a custom small warehouse (57×27). We ran 25
random queries for each benchmark for the SOC objective
with the number of tasks ranging from 6 tasks (12 agents)
to 22 tasks (44 agents) and with a timeout of two minutes.
On each benchmark, we compare the performance of three
different variances of Co-CBS: (i) basic Co-CBS, (ii) Co-
CBS with prioritizing conflicts (PC), and (iii) Co-CBS with
PC and lazy expansion (LE) of root nodes. As opposed to the
classical MAPF, where each agent is provided with start and
goal locations, in Co-MAPF, a task’s start and goal need to
be provided (instead of explicitly providing an agent’s goal).
Thus, we defined the tasks in each scenario as follows, based
on the original benchmark scenario: for each pair of agents,
one set of start and goal locations is used for the task, and
the other set is used for the agents’ start locations.

2https://github.com/CRL-Technion/Cooperative-MAPF

B. Results

We first examine the algorithm’s success rate (i.e., the ratio
of solved instances within the time limit) for all benchmarks.
Fig. 3 shows the success rates of Co-CBS on all maps. Co-
CBS successfully solves more than 80% of the instances
(excluding the den312d benchmark) with ten tasks. The
success rate sharply drops below 20% for twelve tasks or
more on the dense den312d map. Using PC improves the
basic Co-CBS in all cases, achieving up to 30% increase
in the success rate. Furthermore, adding LE on top of PC
further improves the performance in most cases, and never
degrades the performance. This is especially notable with a
large number of tasks, where many root nodes are created.

Fig. 4a shows the average number of generated meeting
sets. Fig. 4b shows the ratio η between the number of
instances where the first set of meetings is used to obtain the
solution and the total number of instances. Both warehouse
environments are typically sparser, causing fewer conflicts.
Thus, a feasible solution is usually found quickly using the
first set of meetings. This is especially noticeable in the large
warehouse, when η is close to one. The search in this case is
equivalent to running CBS with the first set of meetings. For
the same reason, PC does not improve the performance in this
environment. Applying LE as well, however, does improve
the success rate for the majority of tasks. On the other hand,
in other smaller and denser environments, most solutions are
not obtained using the first generated set of meetings. A more
exhaustive meeting-space search is therefore required to find
an optimal solution, as shown in Fig. 4a.

Fig. 5 presents the results achieved using the baseline
planner. More specifically, the baseline algorithm achieves
100% success rate on all benchmarks. However, it performs
very poorly in terms of cost-optimality. In dense maps and a
large number of tasks, the cost is increased by roughly 40%.

VII. DISCUSSION AND FUTURE WORK

In this paper, we introduced the Cooperative Multi-Agent
Path Finding (Co-MAPF) problem, an extension to classical
MAPF that incorporates cooperative behavior. We introduced
Co-CBS, a three-level search algorithm that optimally solves
Co-MAPF instances, as well as two improvements, Prioritiz-
ing Conflict (PC) and Lazy Expansion (LE).

In this section, we provide a comprehensive discussion
regarding the suggested model and algorithm. Specifically,
we discuss further possible improvements that can be applied
to Co-CBS and suggest possible extensions to the Co-MAPF
model. We argue that Co-CBS forms a basic framework that
may serve as a natural starting point for future extensions.

A. Co-CBS’s Extensions and Improvements

1) Information reusing between constraint trees: Co-
CBS expands root nodes by only changing one meeting in
the newly-created node. Moreover, the next selected meeting
is usually very close to the current meeting, both in location
and time. This implies that Co-CBS searches over multiple
trees that potentially have very similar solutions. We may
exploit this for more efficient computation.

(a) den312d (b) random-32-32-20 (c) warehouse-10-20-10-2-1 (d) warehouse-57-27

Fig. 3: Success rates.

(a) (b)
Fig. 4: (a) Number of generated sets of meetings. (b) Ratio η
between the number of instances solved using the first set of
meetings, and the total number of instances.

2) Meetings-level search: Co-CBS uses a simple-yet-
effective method for finding an optimal meeting for each
task. For large problem instances, this method may become
memory and run-time expensive, due to the maintenance of
large meeting tables. We may consider incorporating an algo-
rithm such as the recently-proposed CF-MM* algorithm [28],
for the Multi-Agent Meeting problem. Furthermore, we may
couple meetings and paths planning, and handle conflicts
during the search for a meeting. This may be advantageous
as meetings and conflicts may be tightly coupled.

3) Existing CBS improvements: In addition to the PC
improvement presented in Section V, more CBS improve-
ments exist. Some of these include adding heuristics [29],
disjoint splitting [30], bypassing a conflict [31], symmetry
breaking [32] and exploiting similarities between nodes in a
single constraint tree [33]. We can also apply to Co-CBS
(bounded) sub-optimal variants of CBS [34].

4) Meetings in adjacent locations: Co-CBS solves the
Co-MAPF problem where a agents are required to meet in a
single location. As discussed in Section II-B, this definition
of a meeting can be modified by requiring the agents to
meet in adjacent locations (namely two vertices connected
by an edge). Co-CBS can also solve these scenarios, with
only slight modifications, as planning for each agent is
done independently. More specifically, when computing a
meetings table, for each vertex we need to account for all
its neighbors and create a meeting for each one. Moreover,
when planning paths, each agent would have to arrive at its
corresponding meeting location (and time), rather than both
agents arriving at a single location.

B. Extensions to the Co-MAPF Framework
1) Number and types of collaborating agents: A rather

straightforward generalization of Co-MAPF is to require

Fig. 5: The average cost increase rate over baseline planner.

more than two agents to collaborate on a task. The problem
introduced in Section I motivates this extension: several grasp
units may pickup several items for a single transfer unit.
Co-CBS can solve this problem with a few minor changes.
However, if the number of agents per task isn’t fixed,
additional work is required. Moreover, we may consider
agents with different traversal capabilities (e.g., different
velocities [6]), by possibly changing the single-agent planner.

2) Other forms of cooperative interaction: We introduced
a definition for the Co-MAPF problem, where interaction
between agents is expressed via meetings between two types
of agents. While this interaction is very intuitive, more forms
of cooperative interaction can be modeled (for example,
temporal constraints). We may generalize the formulation to
include a finite set of possible agent types, and define more
complex tasks where each agent type has its dedicated role.

The framework provided by Co-CBS might allow to
address such general definitions by only adjusting the
cooperation-level search (the meetings level in our case).
Any cooperative planning, which results in inducing goals
for an agent, can be easily plugged in into Co-CBS.

3) Task assignment and lifelong planning: In this problem
we assume cooperative tasks are pre-assigned to collabo-
rating agents. However, optimizing the task assignment as
well may significantly affect solution quality (as in classical
MAPF). This is extremely relevant for lifelong-planning
problems, where agents have to attend to a stream of incom-
ing tasks. Such Generalization of the Co-MAPF framework
will bring the formulation closer to real-world problems.

ACKNOWLEDGMENTS

This research was partially supported by grants
No. 102583, 2028142 from the Isaeli Ministry of Science &
Technology (MOST), and by grant No. 1018193 from the
United States-Israel Binational Science Foundation (BSF).

REFERENCES

[1] A. Torreño, E. Onaindia, A. Komenda, and M. Stolba, “Cooperative
multi-agent planning: A survey,” Computing Research Repository
(CoRR), vol. abs/1711.09057, 2017.

[2] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T.
Walker, J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, R. Barták,
and E. Boyarski, “Multi-agent pathfinding: Definitions, variants, and
benchmarks,” in Int. Symp. on Combinatorial Search (SOCS), 2019,
pp. 151–159.

[3] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” Artificial Intelli-
gence, vol. 29, no. 1, pp. 9–20, 2008.

[4] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research
(JAIR), vol. 31, pp. 591–656, 2008.

[5] J. Švancara, M. Vlk, R. Stern, D. Atzmon, and R. Barták, “Online
multi-agent pathfinding,” in AAAI Conf. on Artificial Intelligence,
vol. 33, 2019, pp. 7732–7739.

[6] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian,
and S. Koenig, “Multi-agent path finding with kinematic constraints,”
in Int. Conf. Automated Planning and Scheduling (ICAPS), 2016, pp.
477–485.

[7] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. K. S.
Kumar, T. Uras, H. Xu, C. A. Tovey, and G. Sharon, “Overview:
Generalizations of multi-agent path finding to real-world scenarios,”
Computing Research Repository (CoRR), vol. abs/1702.05515, 2017.

[8] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. R. Sturtevant, G. Wagner, and P. Surynek, “Search-based
optimal solvers for the multi-agent pathfinding problem: Summary and
challenges,” in Int. Symp. on Combinatorial Search (SOCS), 2017, pp.
29–37.

[9] O. Salzman and R. Stern, “Research challenges and opportunities in
multi-agent path finding and multi-agent pickup and delivery prob-
lems,” in Int. Conf. on Autonomous Agents and MultiAgent Systems
(AAMAS), 2020, pp. 1711–1715.

[10] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” in Int. Conf. on
Autonomous Agents and MultiAgent Systems (AAMAS), 2017, pp. 837–
845.

[11] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for
multi-agent pickup and delivery,” in Int. Conf. on Autonomous Agents
and MultiAgent Systems (AAMAS), 2019, pp. 1152–1160.

[12] H. Ma, C. A. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-
agent path finding with payload transfers and the package-exchange
robot-routing problem,” in AAAI Conf. on Artificial Intelligence, 2016,
pp. 3166–3173.

[13] D. Atzmon, Y. Zax, E. Kivity, L. Avitan, J. Morag, and A. Felner,
“Generalizing multi-agent path finding for heterogeneous agents,” in
Int. Symp. on Combinatorial Search (SOCS), 2020, pp. 101–105.

[14] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis
and observations from the first Amazon picking challenge,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 1,
pp. 172–188, 2016.

[15] R. Shome, “Roadmaps for robot motion planning with groups of
robots,” Current Robotics Reports, pp. 1–10, 2021.

[16] C. C. Murray and R. Raj, “The multiple flying sidekicks traveling
salesman problem: Parcel delivery with multiple drones,” Transporta-
tion Research Part C: Emerging Technologies, vol. 110, pp. 368–398,
2020.

[17] S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone,
“Efficient large-scale multi-drone delivery using transit networks,” in
IEEE Int. Conf. Robotics and Automation (ICRA), 2020, pp. 4543–
4550.

[18] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[19] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian,
“Conflict-based search with optimal task assignment,” in Int. Conf.
on Autonomous Agents and MultiAgent Systems (AAMAS), 2018, pp.
757–765.

[20] G. Revach, N. Greshler, and N. Shimkin, “Planning for cooperative
multiple agents with sparse interaction constraints,” in The online
Proceedings of the 6th Workshop on Distributed and Multi-Agent
Planning (DMAP) at ICAPS 2020, 2020, pp. 48–56.

[21] P. Surynek, “Multi-goal multi-agent path finding via decoupled and
integrated goal vertex ordering,” Computing Research Repository
(CoRR), vol. abs/2009.05161, 2020.

[22] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing
cost tree search for optimal multi-agent pathfinding,” Artificial Intel-
ligence, vol. 195, pp. 470–495, 2013.

[23] J. Yu and D. Rus, “Pebble motion on graphs with rotations: Effi-
cient feasibility tests and planning algorithms,” in Workshop on the
Algorithmic Foundations of Robotics (WAFR), ser. Springer Tracts in
Advanced Robotics, vol. 107, 2014, pp. 729–746.

[24] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching
with consistent prioritization for multi-agent path finding,” in AAAI
Conf. on Artificial Intelligence, 2019, pp. 7643–7650.

[25] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and
S. E. Shimony, “ICBS: improved conflict-based search algorithm for
multi-agent pathfinding,” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2015, pp. 740–746.

[26] N. Sturtevant, “Benchmarks for grid-based pathfinding,”
Transactions on Computational Intelligence and AI in Games,
vol. 4, no. 2, pp. 144 – 148, 2012. [Online]. Available:
http://web.cs.du.edu/ sturtevant/papers/benchmarks.pdf

[27] J. Li, D. Harabor, P. J. Stuckey, and S. Koenig, “Pairwise symmetry
reasoning for multi-agent path finding search,” Computing Research
Repository (CoRR), vol. abs/2103.07116, 2021.

[28] D. Atzmon, S. I. Freiman, O. Epshtein, O. Shichman, and A. Felner,
“Conflict-free multi-agent meeting,” in Int. Conf. Automated Planning
and Scheduling (ICAPS), 2021, pp. 16–24.

[29] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. K. S. Kumar,
and S. Koenig, “Adding heuristics to conflict-based search for multi-
agent path finding,” in Int. Conf. Automated Planning and Scheduling
(ICAPS), 2018, pp. 83–87.

[30] J. Li, D. Harabor, P. J. Stuckey, H. Ma, and S. Koenig, “Disjoint
splitting for multi-agent path finding with conflict-based search,” in
Int. Conf. Automated Planning and Scheduling (ICAPS), 2019, pp.
279–283.

[31] E. Boyarski, A. Felner, G. Sharon, and R. Stern, “Don’t split, try to
work it out: Bypassing conflicts in multi-agent pathfinding,” in Int.
Conf. Automated Planning and Scheduling (ICAPS), 2015, pp. 47–51.

[32] J. Li, G. Gange, D. Harabor, P. J. Stuckey, H. Ma, and S. Koenig,
“New techniques for pairwise symmetry breaking in multi-agent path
finding,” in Int. Conf. Automated Planning and Scheduling (ICAPS),
2020, pp. 193–201.

[33] E. Boyarski, A. Felner, D. Harabor, P. J. Stuckey, L. Cohen, J. Li, and
S. Koenig, “Iterative-deepening conflict-based search,” in Int. Joint
Conf. on Artificial Intelligence (IJCAI), 2020, pp. 4084–4090.

[34] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Int. Symp. on Combinatorial Search (SOCS), 2014.

