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T*ε—Bounded Sub-optimal Efficient Motion Planning for
Minimum-Time Planar Curvature-Constrained Systems

Doron Pinsky* Petr Váňa† Jan Faigl† Oren Salzman‡

Abstract—We consider the problem of finding collision-free
paths for curvature-constrained systems in the presence of
obstacles while minimizing execution time. Specifically, we focus
on the setting where a planar system can travel at some range of
speeds with unbounded acceleration. This setting can model many
systems, such as fixed-wing drones. Unfortunately, planning for
such systems might require evaluating many (local) time-optimal
transitions connecting two close-by configurations, which is com-
putationally expensive. Existing methods either pre-compute all
such transitions in a preprocessing stage or use heuristics to speed
up the search, thus foregoing any guarantees on solution quality.
Our key insight is that computing all the time-optimal transitions
is both (i) computationally expensive and (ii) unnecessary for
many problem instances. We show that by finding bounded-
suboptimal solutions (solutions whose cost is bounded by 1 + ε
times the cost of the optimal solution for any user-provided ε)
and not time-optimal solutions, one can dramatically reduce the
number of time-optimal transitions used. We demonstrate using
empirical evaluation that our planning framework can reduce
the runtime by several orders of magnitude compared to the
state-of-the-art while still providing guarantees on the quality of
the solution.

I. INTRODUCTION

In this work, we study the problem of finding minimal-time
collision-free paths for curvature-constrained systems with
variable speed. Curvature constraints are prevalent in a variety
of systems (see, e.g., [1], [2], [3], [4]). Unfortunately, de-
termining whether a collision-free curvature-constrained path
exists is NP-hard even for a planar system [5]. As a result, this
continuous problem can be discretized into a graph data struc-
ture using sampling-based [6] or search-based approaches [7],
which is then queried to obtain a discrete path representing
a curvature-constrained solution in the continuous space. The
graph’s vertices correspond to robot configurations (i.e., d-
dimensional points that uniquely describe the robot’s position
and orientation) and edges correspond to local motions taken
by the robot.

Interestingly, the computational bottleneck in these search
algorithms is a frequent computation of local time-optimal
transitions between neighboring vertices, obtained using nu-
merical optimization. Our key insight, depicted in Fig. 1, is
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Fig. 1. (a), (b) The time-optimal and bounded-suboptimal path obtained
by T* [8] and by T*ε using an approximation factor of ε = 2, respectively.
The red and green segments correspond to transitions where the system travels
at the minimum and maximum speed, respectively. The colored arrows show
the orientation of each configuration in the solution. T*ε finds a solution
whose cost is 7% larger than the cost of the optimal solution found by T*,
but the runtime of T*ε is faster by a factor of roughly 13×. (c) Given a
start orientation (diagonal on the left or horizontal on the right) in an eight-
connected grid, there are 68 unique transitions in total (after taking into
account symmetry and rotation) to the adjacent grid cells. The speedup of T*ε
is obtained by computing only a small subset of the time-optimal transitions
that are all computed by T*. Here, T*ε computes only five transitions, four
of which are used in the found path. Figure best viewed ni color.

that computing all the time-optimal transitions is both (i) com-
putationally expensive and (ii) unnecessary for many prob-
lem instances. We introduce a novel algorithmic framework
called T*ε that allows finding bounded-suboptimal solutions
while reducing planning times by orders of magnitude com-
pared to the state-of-the-art.

Our framework consists of three algorithmic components.
The first component assumes that we have an efficient-to-
compute lower bound on the cost of the optimal transition
between two configurations. In Sec. VI, we demonstrate two
such bounds—when the environment does not and does con-
tain dynamics such as wind currents. The second algorithmic
component is the A*ε-based search algorithm [9] that uses
these lower bounds on optimal transitions, together with a
user-provided approximation factor ε, to choose which edges
to consider. Roughly speaking, the search attempts to use only
transitions for which the true (computationally expensive) cost
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was computed while guaranteeing the bound on the quality
of the solution obtained. Finally, the third component is a
heuristic approach to pre-compute a small set of transitions
that are likely to be used in an optimal path.

Using efficient-to-compute lower bounds on the cost of
local transitions is a common technique to speed up motion-
planning algorithms (see, e.g., [10], [11], [12], [13], [14]).
These are used to minimize the computation time taken to
compute the cost of an edge or transition, also known as
an edge evaluation. Typically, edge evaluation corresponds to
computing if a robot intersects an obstacle while performing
some local motion (also known as collision detection [15]).
Thus, the computationally expensive operation of edge eval-
uation is applied to each edge individually. Indeed, it can be
shown that under some mild assumptions, these approaches
allow minimizing the number of edges evaluated [16].

In our case, we plan in a discretized space; thus, the setting
is somewhat different. There is a fixed set of transitions
that can be taken from any given configuration. Since these
transitions are computationally expensive to compute, it is
natural to try and re-use transitions that have already been
computed. The challenge is how this should be done while
ensuring that the cost of the path found is within a given
multiplicative bound of the cost of an optimal path.

As we demonstrate in simulation (Sec. VI), our planning
framework allows to compute only a small fraction of tran-
sitions, which, in turn, allows us to reduce the runtime by
several orders of magnitude compared to the state-of-the-art,
especially in dynamic conditions.

II. RELATED WORK

We now continue to review related work on planning
for minimum-time curvature-constrained systems. When the
system is constrained to travel at a single speed, an optimal
path connecting two configurations (i.e., two planar locations,
each associated with its angular heading) can be computed
analytically [17]. In this setting, an optimal path, also known
as Dubins path, is one of six types: RSR, RSL, LSR, LSL,
RLR, and LRL, where R and L refer to right and left turns,
respectively, and S refers to going straight. As the system
travels at a single speed, the shortest and the time-optimal
paths are identical.

The kinematic model considered in this work is the setting
where the system can travel at some range of speeds but
with unbounded acceleration (i.e., transitioning between low
and high-speed can be done instantaneously). It is not hard
to see that, in such a setting, the shortest path is attained
by computing the optimal Dubins path, assuming that the
system travels at the minimum speed (as the system can
travel using the smallest turning radius possible and can thus
better maneuver). Computing the time-optimal path requires
alternating between low-speed (to allow for tighter turns) and
high-speed motions (to allow for faster progress).

Wolek et al. [18] showed that it is sufficient to consider
only the two extreme speeds and identified a sufficient set of 34
candidate paths (in contrast to the six-candidate paths when the
system travels at a single speed). Each candidate path contains

circular arcs and straight-line segments on which the vehicle
can travel at either of the two extreme speeds. However, in
contrast to Dubins paths, which can be computed analyti-
cally, computing these time-optimal paths for a variable-speed
system requires a numerical optimization that is (i) much
more computationally expensive and (ii) may return locally
optimal solutions (and not globally optimal ones). Kučerová
et al. [19] showed an efficient heuristic approach to find high-
quality paths when considering time as the cost function by
using multiple turning radii. However, there is no guarantee
regarding the quality of these paths.

For each model mentioned above, motion-planning algo-
rithms that account for environmental obstacles were intro-
duced. These include both sampling-based approaches such
as the work by Wilson et al. [20], search-based methods such
as the work by Song et al. [8], and hybrid methods that borrow
ideas from both motion-planning disciplines [21]. Of specific
interest to the presented work is T* [8], a time-optimal risk-
aware motion-planning algorithm that obtains a time-optimal
solution but requires a time-consuming preprocessing phase.
As our work builds upon the algorithmic foundation of T*,
we describe it in Sec. IV. Following T*, Wilson et al. [22]
developed a fast motion-planning algorithm that uses Dubins
paths of various speeds to reduce the computational effort and
runtime of T*. For the settings evaluated, the costs of solutions
obtained by this algorithm are near-optimal, but there are no
guarantees regarding the quality of solutions.

The aforementioned kinematic model can be extended to
account for external dynamic changes such as wind or ocean
currents. For such systems, a minimum-time path can be
computed similarly to the setting where no wind exists [23].
However, only two candidate path types have analytic so-
lutions (RSR and LSL). Mittal et al. [24] used those two
types to compute a path between two vehicle poses under
ocean currents. These kinematic models were used not only
in the context of single-goal motion planning problems but
also in the settings where the objective is to reach multiple
goals [25] and further extended to account for some notion of
rewards [26].

III. PROBLEM STATEMENT

Our problem formulation follows Song et al. [8]. Specifi-
cally, we assume a variable-speed curvature-constrained planar
robotic system with unbounded acceleration. The system’s
dynamics can be described byẋ(t)ẏ(t)

θ̇(t)

 =

v(t) cos θ(t)v(t) sin θ(t)
u(t)

 . (1)

Here, (x, y, θ) ∈ SE(2) is the robot’s placement and ori-
entation, v is the robot’s speed (which is considered as a
control input) and u is the second control input dictating the
system’s turning rate via maximal lateral acceleration K that
is determined for the specific system1 as

|u| ≤ K

v
. (2)

1For example, K = g tanϕmax for fixed-wing vehicles, where g is the
gravitational acceleration and ϕmax the maximum allowed bang angle.



PINSKY et al.: T*ε—BOUNDED SUB-OPTIMAL EFFICIENT MOTION PLANNING FOR MINIMUM-TIME PLANAR CURVATURE-CONSTRAINED SYSTEMS 3

The speed is limited by some minimum and maximum values
denoted by vmin and vmax, respectively. W.l.o.g., we assume
that vmax = 1. Thus, the system is constrained to travel
between two extreme radii:

ρmax =
v2max

K
, and ρmin =

v2min

K
. (3)

We assume that the continuous workspace is discretized into
a grid according to a predefined resolution. Each cell can be
categorized as free or forbidden corresponding to locations that
the system can and cannot occupy, respectively. In addition, we
assume that every robot motion starts and ends at the center of
a cell. Specifically, at each step, the robot transitions to one of
its eight neighbors and with one of eight possible orientations.

A path γ is a sequence of configurations where the tran-
sition between them obeys the system’s dynamics and con-
straints (Eq. 1). It is said to be collision free if it only occupies
free cells. The cost c(γ) of a path γ is the step-wise cost of
the transitions between any consecutive configurations in γ. It
can be computed using the system velocity along γ. Namely,

c(γ) =

∫
γ

1

v(τ)
dτ, (4)

where v(τ) refers to the speed along the path segment dτ .
Given start and goal configurations sstart, sgoal ∈ SE(2), a

collision-free path γ is said to be optimal if it (i) starts at sstart
and ends at sgoal; and (ii) there is no path γ′ connecting sstart
and sgoal such that c(γ′) < c(γ). Similarly, it is said to be
bounded sub-optimal for some approximation factor ε ≥ 0 if
it (i) starts at sstart and ends at sgoal; and (ii) for any path γ′

connecting sstart and sgoal, c(γ) ≤ (1 + ε) · c(γ′).
While previous works (see, e.g., [8]) were concerned with

finding optimal paths, in this work, we are interested in finding
bounded sub-optimal paths for a user-provided approximation
factor ε. As we will see, the extra flexibility obtained by
finding bounded sub-optimal paths allows us to reduce running
times by orders of magnitude with little compromise on the
path quality in practice.

IV. ALGORITHMIC BACKGROUND

As both A*ε [9] and T* [8] serve as the algorithmic
foundation of our work, we provide a brief description of these
two algorithms.

A. A*ε (A-star epsilon)

A*ε (also known as FOCAL search) [9] is a bounded-
suboptimal search algorithm based on the celebrated A* al-
gorithm [27]. Like A*, it searches a graph by continuously
expanding nodes, starting from the start node until the goal
node is reached. To ensure optimality, A* orders nodes in a
priority list called OPEN. Nodes in the OPEN list are ordered
according to their f -value that is the sum of the cost to reach
the node from the source (also known as the cost-to-come
or g-value and denoted by g(n) for a node n) added to a
conservative estimate of the cost to reach the goal (also known
as the cost-to-go or h-value and denoted by h(n) for a node n).
Namely for a node n, its f -value is

f(n) = g(n) + h(n). (5)

Unlike A*, A*ε also uses a so-called FOCAL list containing
all nodes from the OPEN list whose f -values are no larger
than 1+ε times the smallest f -value in the OPEN list. It can be
shown that expanding any sequence of nodes from the FOCAL
list ensures that the cost of the final solution will indeed be
bounded by a factor of 1 + ε when compared to the cost of
the optimal solution.

B. T* (T-star)

T* [8] builds on the approach by Wolek et al. [18] that
allows finding an optimal2 solution for the time-optimal transi-
tion between any two configurations in an obstacle-free space.
These transitions are used to compute all possible motions for
an agent in a discretized eight-connected grid. In this space,
there is a finite set of possible transition types. For example, a
transition can be moving from configuration (0, 0, 0) to config-
uration (1, 1, π/2), which corresponds to moving diagonally
in the NE direction while changing the system’s heading.

To this end, there are a total of 8 × 8 × 8 = 512
possible transitions (eight possible start and target orientations
and eight neighboring cells). However, after accounting for
symmetry and rotation, there are only 68 unique transitions.

After pre-computing all possible transitions, an A*-like
search is used to find a minimal-cost path. In their original
work, Song et al. [8] consider both minimal-time paths and a
cost-function that balances the time and the risk of colliding
with an obstacle. However, we consider only minimum-time
paths in this work and refer to T* as the search algorithm that
optimizes this criterion.

It is important to note that in many settings it is not possible
to pre-compute all transitions in an offline phase. This is
because optimization-related parameters might be available
only when a query is provided. For example, in the presence
of wind conditions, which affect the system’s dynamics and
hence the transitions’ computation, wind parameters are only
available to the planner when a query is provided. For further
details, see Sec. VI.

Interestingly, after extensive empirical evaluation, we no-
ticed that: (i) pre-computing all possible transitions last two
orders of magnitude more than the A*-like search; (ii) only a
small fraction of all possible time-optimal transitions are part
of an optimal path found by T*; and (iii) Dubins path computed
using the minimal speed vmin (whose cost is a lower bound
on the length of the time-optimal path) is often in the same
homotopy class as the optimal path and shares a significant
portion of its transitions. These observations are key to our
algorithmic framework described in the following section.

V. ALGORITHMIC FRAMEWORK—T*ε
A. Preliminaries

Let T denote a set of possible transitions. By a slight
abuse of notation, we assume that we have access to two

2To be precise, the solutions computed are only an approximation of
the time-optimal solutions since the computation is based on numerical
optimizations, which may not converge to a global optimum. Thus, the
optimality of T* and the bounded sub-optimality of T*ε is only with respect
to (w.r.t.) the quality of the local-optimization.
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Algorithm 1: T*ε
Input: map, sstart, sgoal, approximation factor ε
Output: bounded-suboptimal path connecting sstart to sgoal

S1. compute c(·) for transitions in
shortest path
γvmin

SP ← minimal-length collision-free Dubins path on1

map connecting sstart to sgoal using vmin

for each transition T ∈ γvmin

SP do2

compute c(T ), cache result and set κ(T ) = 03

S2. A*ε-like search
run A*ε from nstart (node with state sstart) with OPEN and4

FOCAL ordered according to Eq. 5 and 7, respectively
when expanding a node n do5

if incoming transition n.T was not computed6

(κ(n.T ) = 1) then
compute c(n.T ), cache result, set κ(n.T ) = 07

continue8

if configuration associated with the node n is sgoal then9

return path associated with n10

for each succesor node n′ of n in map do11

use Eq. 6 to evaluate the g-value of n′12

functions c : T → R and ĉ : T → R. The first, which is
expensive-to-compute, corresponds to evaluating the true cost
of the transition according to Eq. 4. The second, which is fast-
to-compute, corresponds to evaluating a lower bound on the
transition cost. Namely, ∀T ∈ T , ĉ(T ) ≤ c(T ). Once the cost
of a transition T is evaluated using c(·), the value is stored
in a cache-like data structure for later use. Thus, there is no
need to compute it again when evaluating the same transition
later.

To this end, let κ : T → {0, 1} be an indicator function cor-
responding to the cases where the cost of a transition T (i) has
not been evaluated using c(·), i.e., κ(T ) = 1, or (ii) has been
evaluated using c(·), i.e., κ(T ) = 0. We start our algorithm
with the setting that ∀T ∈ T , κ(T ) = 1.3

B. Algorithmic Description

Our algorithmic framework, summarized in Alg. 1, consists
of the following two main steps.
S1: Heuristically computing the true cost for a small set of

transitions.
S2: Finding a bounded-suboptimal solution while trying to

minimize the number of calls to c(·).
In the first step S1 (lines 1–3), we start by find-

ing the shortestcollision-free Dubins path γvmin

SP (line 1)
from sstart to sgoal that uses the minimum speed vmin. For
every transition T ∈ γvmin

SP taken along this path, we compute
its true cost c(T ), cache it, and set κ(T ) = 0 (lines 2–3).

In the second step S2 (lines 4–12), we run an A*ε-like search
to find a bounded-suboptimal path from sstart to sgoal given
some approximation factor ε. We base our search algorithm on

3The reason we chose to define κ in this manner is that we start
with κ(T ) = 1 for all nodes and order nodes lexicographically in the FOCAL
list where lower means better.

A*ε because we can use it to heuristically guide the search to
expand nodes for which the incoming time-optimal transition
has already been computed.

Formally, each node n considered by the search is as-
sociated with a parent node n.parent except for the start
node nstart associated with sstart, which has no parent. In
addition, each node stores the time-optimal transition n.T used
to get from n.parent to n. When expanding a node n (namely,
computing successor nodes and inserting them into the OPEN
list), the true cost c(n.T ) of the time-optimal transition leading
to n is computed. However, the cost used to reach a successor
node n′ via transition n′.T is (i) ĉ(n′.T ) if κ(n′.T ) = 1
and (ii) c(n′.T ) if κ(n′.T ) = 0. Note that for some nodes
in the OPEN list, the true cost of the time-optimal transition
associated with them may not have been computed. However,
for all expanded nodes, the true cost of the incoming time-
optimal transition is computed at some point.

To this end, if we set g(nstart) = 0 to be the cost-to-come (g-
value) of the start node, then the cost-to-come of any other
node n in the OPEN list is

g(n) = g(n.parent) +

{
ĉ(n.T) if κ(n.T) = 1,

c(n.T) if κ(n.T) = 0.
(6)

The f -value of the node n (denoted by f(n) and used to
prioritize nodes in the OPEN list) is defined in Eq. 5. h(n) can
be any admissible estimate of the cost to reach the goal. In
our setting, we use the length of the minimum speed Dubins
path divided by the vehicle’s maximum speed.

Recall (Sec. IV) that A*ε uses a FOCAL list that contains
all nodes whose f -value is at most 1+ ε times the f -value of
the minimal-cost node in the OPEN list. In our setting, nodes
in FOCAL are lexicographically sorted using the following key
(from low to high):

key(n) = (κ(n.T ), f(n)). (7)

Thus, any node n for which κ(n.T ) = 0 (i.e., the true
cost c(n.T ) of the transition leading to n has been computed)
is always prioritized before any node n′ for which κ(n′.T ) = 1
(i.e., the true cost c(n′.T ) of the transition leading to n′

has not been computed), regardless of their respective f -
values. Among all nodes with identical values of κ, nodes with
smaller f -values are prioritized. Once a node n is chosen for
expansion, the true cost of n.T is computed if it has not been
computed beforehand. Finally, a path is found once a node
associated with the goal configuration sgoal is removed from
the OPEN list.

Following the theoretic properties of A*ε [9] and using the
fact that ∀T ĉ(T ) ≤ c(T ) we have the following Corollary.

Corollary 1: Let ε ≥ 0 and ĉ(·) be some function that
bounds from below the true cost c(·) of any time-optimal
transition. T*ε, using ε, ĉ, and c is bounded sub-optimal with
an approximation factor of 1 + ε.

VI. EVALUATION

In this section, we report on empirical evaluation of our ap-
proach in a simulated environment inspired by Song et al. [8].
We start (Sec. VI-A) by evaluating our heuristic approach for
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Fig. 2. Average number of calls to c(·) by T*ε as a function of ε with (blue)
or without (purple) step S1, respectively. Recall that there are at most 68
possible transitions.

computing the true cost for a small set of transitions (step S1).
Then we continue (Sec. VI-B) to demonstrate how the lower
bound ĉ needs to be both informative (i.e., as close as possible
to the real cost c) and computationally cheap-to-compute (as
its main purpose is to save computation time) by evaluating
several different lower bounds that balance these two traits.
We then move to compare our motion-planning approach
with T* in static environmental conditions (Sec. VI-C), i.e.,
when the system dynamics are known before the query is
provided and are independent of the specific location at which
the robot resides, and in dynamic environmental conditions
such as when wind currents exist (Sec. VI-D). Finally, we
briefly discuss and qualitatively compare T*ε with alternative
approaches to find paths that attempt to minimize the execution
time (Sec. VI-E).

All experiments were run on a 3.1GHz Intel Core i9 proces-
sor with 32GB of memory. Benchmarks, system parameters,
and C++ implementation of all the algorithms used in our
work are publicly available4. Throughout Sec. VI-A–VI-C, we
test the performance of our algorithm across 100 randomly
generated scenarios of 14 × 14 cells and using vmin = 0.5,
where for a given scenario, each cell has a probability of 25%
of being blocked, and the start and goal configurations are cho-
sen uniformly at random while ensuring that a solution exists.
When reporting algorithmic attributes, e.g., solution cost or
runtime, the values represent the average across the 100 sce-
narios. In some cases, we also report confidence intervals that
include two standard deviations from the mean. In Sec. VI-D,
we provide additional information on the experiment setup.

A. Evaluating the Efficacy of step S1

To evaluate the efficacy of the step S1, wherein we provide
a heuristic approach for computing the true cost for a small
set of transitions, we report the number of calls to c(·) by T*ε
as a function of the approximation factor ε with and without
this initial step (Fig. 2).

Observe that for values of ε larger than 0.1, using S1 allows
reducing the average number of calls to c(·) by roughly 10%.
Moreover, in this case, for large approximation factors, the
average calls to c(·) converges to the number of transitions
in γvmin

SP . When the step S1 is not invoked, T*ε is not

4https://github.com/CRL-Technion/tstar-epsilon.
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Fig. 3. Comparing the effect of different approaches for lower bounds (ĉ(·)
in Eq. 6) for several values of the approximation factor ε. (a) Average number
of calls to c(·) and (b) Average running time of T*ε, respectively.

“bootstrapped” with a good set of pre-computed time-optimal
and thus evaluates unnecessary transitions.

B. Computing Lower Bounds—Balancing Computation Time
with Informative Lower Bounds

Recall that in Sec. V, we assumed that we have access
to ĉ—an efficient-to-compute tight lower bound on c, the
true cost of the time-optimal transition. However, there is an
inherent tradeoff between how informative a lower bound is
(which immediately corresponds to how accurately it can guide
the search) and its computation time (which can negate the
effectiveness of the lower bound).

We evaluated T*ε using three different lower bounds that
demonstrate this behavior: (i) Euclidean distance divided
by vmax; (ii) length of minimum-speed Dubins path divided
by vmax; and (iii) length of minimum-speed Dubins path
divided by vmax while accounting for environment obstacles.
Note that all lower bounds are divided by vmax, thus always
underestimating the true cost of a transition. In addition, they
are ordered from low to high according to their computation
time and how informative they are.

We compare (Fig. 3) the three lower bounds w.r.t. the
number of time-optimal transitions computed by T*ε and
its running time. As expected, the Euclidean distance is the
least-informative lower bound, thus resulting in the maximal
number of time-optimal transitions computed for all values
of ε. Moreover, even though it is efficient-to-compute, it does
a poor job in guiding the search, and thus the runtime is
high. Computing Dubins path while accounting for obstacles is
more informative but also more expensive-to-compute. It does
result in the smallest number of calls to c(·) but has longer
running times when compared to using Dubins paths that do
not account for obstacles. The latter also has a comparable
number of calls to c(·). Thus, we use Dubins paths without
obstacles as the lower bound in the rest of the evaluation.

C. Motion Planning in Static Environmental Conditions

We compare T*ε with T* in static environmental conditions,
i.e., where the system dynamics are invariant to the robot’s
placement and orientation in the scenario. As we can see
in Fig. 4c, computing time-optimal transitions dominate the
running time of all algorithms. If the system dynamics are

https://github.com/CRL-Technion/tstar-epsilon
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Fig. 4. Comparison of T* and T*ε in static environmental conditions over 100 randomly chosen start and goal configurations. (a) Solution found by T*
and by T*ε with ε = 3 for one representative experiment. The beginning of the solution found by both algorithms is identical, while the end differs and is
highlighted on the right-hand side. (b) Average solution cost of T*ε compared to T* as a function of ε. (c) Breakdown of the running time of T* and T*ε
for different values of ε. (d) Speedup in running time of T*ε over T* obtained with and without pre-computing all time-optimal transitions.

known in advance, these can be pre-computed in an offline
step by T*, and it outperforms T*ε for all ε by a factor of
between 60× and 290×. However, if we account for this
preprocessing time, T*ε dramatically reduce the run time by
a factor ranging between 8× and 15×. It is worth noting that
in either case, T*ε finds a solution with an average cost that
is much lower than the guaranteed suboptimality bound.

D. Motion Planning in Dynamic Environmental Conditions
In the previous section, we considered static environmental

conditions and showed that using an approximation factor
allows reducing T*ε’s planning times dramatically. However,
if the system’s dynamics are known in advance, T* may
perform all its computationally-expensive operations in a pre-
processing stage. In contrast, this is not the case when the
system’s dynamics are not known in advance. It can be due
to changes in the maximal speed that the system can take
(due to, e.g., payload changes of the system or regulatory
changes happening just before a query is received) or due
to dynamic environmental conditions such as wind currents
whose magnitude and direction is known only when a query
is received. We use the latter case to demonstrate the efficacy
of T*ε. In particular, we assume that the magnitude of wind
currents is uniform across a given scenario.

It is worth noting that this dynamic setting, analyzed by
Techy and Woolsey [23], can be seen as a generalization of
the setting described in Sec. III and by Mittal et al. [24]. To
account for this more-involved dynamic setting, we first note
that one cannot use rotation and symmetry between transitions
to reduce the total amount of unique transitions. Thus, in this
setting, the total number of time-optimal transitions is 512.
Moreover, this requires an adaptation of how time-optimal
transitions are computed (see the Appendix for a description

of the new model). This adaptation, based on the code for
computing time-optimal transitions [18], is publicly available5.
The second notable change is that computing lower bounds
(namely, when calling ĉ, requires some care, and the modifi-
cations are detailed in the Appendix.

For dynamic environmental conditions, we used the same
randomly generated scenarios as described earlier. For each
such scenario, we generated 10 instances with varying wind
and minimum velocity values. In particular, we sampled wind
conditions from ‖w‖ ∈ [0.14, 0.41] and minimum velocity
values vmin ∈ [0.4, 0.9]. In total, we ran 1000 experiments
and the averaged results appear in Fig. 5. The most compu-
tationally demanding component in both T*ε and T* is still
computing the time-optimal transitions, which requires two
orders of magnitude more time than any other algorithmic
component. However, we observe that the approximation fac-
tor allows for a dramatic reduction of the running time with
little compromise on the quality of the solution. For example,
as it can be seen in Fig 5c, using ε = 1, T*ε guarantees a
solution whose cost is at most twice c(γ∗) the cost of the
optimal solution, but returns a path whose average cost is no
more than 1.15 ·c(γ∗). It is done while obtaining a speedup in
run time by an average factor of 28×. In general, as depicted
in Fig. 5c, increasing ε results in a dramatic running-time
improvement at the cost of slightly lower solution quality.

E. Discussion—Alternative Approaches

Wilson et al. [22] reduced computational effort by allowing
the system to follow Dubins paths but using several radii, and
evaluated this approach when using three different radii. This
heuristic approach reduces runtime, produces near-optimal

5https://github.com/CRL-Technion/Variable-speed-Dubins-with-wind

https://github.com/CRL-Technion/Variable-speed-Dubins-with-wind
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Fig. 5. Comparing T* and T*ε in dynamic environmental conditions where the magnitude and direction of wind currents (blue arrows) are given at the
query time. (a) Representative solution obtained on one randomly-generated map with randomly-generated start and goal configurations, wind conditions and
minimum velocity vmin. (b) Running time breakdown of T* and T*ε for the selected values of ε. (c) Average solution cost compared to the cost of the
optimal solution and speedup in running time as a function of ε.

solutions but with no guarantees regarding their quality. From
our comparison of T*ε and Wilson’s model in static envi-
ronments, we found that running times are faster by several
orders of magnitude, but path costs are larger by an average
of 18%. However, when evaluating their approach in windy
conditions, the speedup in running time is comparable to T*ε
(as local transitions cannot be computed analytically and a
computationally expensive root-finding problem needs to be
solved [23]), and the quality of paths remain higher (again,
with no formal guarantees).

An alternative approach is to compare our work with the
approach by Mittal et al. [24] that specifically accounted for
efficient computation of paths in dynamic environments. How-
ever, the main objective of their approach is online motion-
planning under ocean currents, and no importance was given to
the quality of paths. When comparing T*ε with their approach
on representative environments, the path quality obtained by
T*ε was higher (lower execution times) by a factor of more
than 2.7×.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we present T*ε, a novel algorithmic framework
for efficiently finding bounded sub-optimal solutions for time-
optimal motion-planning. This is done by minimizing the
number of computations of time-optimal transitions used by
the system. When one cannot pre-compute the time-optimal
transitions in advance, this reduces the planning times by
orders of magnitude compared to the state-of-the-art.

Future work includes adapting our work for efficient re-
planing (e.g., when the wind changes while the system is
in motion or dramatic payload changes during trajectory
execution changing the system’s constraint). Here, we plan
to adapt LPA* [28] to account for minimizing the number of
transitions used.

Another natural extension is to account for settings when
the approximation factor ε cannot be determined a priori by
the user. Here, it is natural to use an anytime [29] approach.
Instead of providing a fixed ε, the user would provide an upper
bound for the algorithm’s running time. We suggest starting
with an initially high value of the approximation factor ε to
compute an initial solution quickly and then progressively

decreases ε as the time permits while reusing transitions
computed in earlier search episodes.

APPENDIX

To consider the setting where we need to account for wind
currents, we detail the updated dynamics model and present
two approaches to compute lower bounds on transitions cost-
efficiently.

A. Updated Model

We assume that there is a constant wind w = (wx, wy) that
changes the original system dynamics (Eq. 1) toẋ(t)ẏ(t)

θ̇(t)

 =

v(t) cos θ(t) + wx
v(t) sin θ(t) + wy

u(t)

 . (8)

Furthermore, we assume that regardless of the magnitude of
the wind, the vehicle will move forward. It is ensured by the
additional assumption that the wind magnitude is smaller than
the minimum speed of the system vmin, i.e.,

|w| < vmin. (9)

B. Updated Lower Bounds

The wind component may significantly influence the turning
capabilities (in the reference frame of the ground). The small-
est turning radius is obtained when flying directly against the

Fig. 6. Average ratio between each lower bound and the time-optimal cost
as a function of the wind’s modulus (solid lines). Colored regions represent
a 60% non-parametric confidence interval of the true value.
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wind. We denote it by ρLB, the lower bound radius, and have
that

ρLB =

(
1− |w|

vmin

)
ρmin. (10)

To this end, a lower bound on the true length of the path
between two configurations s1 and s2 can be determined based
on the length L(s1, s2, ρLB) of Dubins path with the lower
bound radius ρLB. Now, if this value is divided by an upper
bound on the effective maximal speed veffective

max in the reference
frame of the ground, it provides a lower bound on the true cost
(i.e., the travel time).

We suggest two lower bounds based on how veffective
max is deter-

mined. The first approach assumes that veffective
max = vmax+ |w|.

Namely, the effective maximal speed is the sum of the system’s
maximum speed and the wind magnitude. Thus, the first lower
bound LB1 is defined as

LB1(s1, s2) =
L(s1, s2, ρLB)

vmax + |w|
. (11)

The second lower bound LB2 considers the direction be-
tween the start and end configurations (s1 and s2, respectively)
by computing the ground speed vG in the given direction d.
The direction is determined based on s1 and s2 as

d =
sxy
2 − sxy

1

|sxy
2 − sxy

1 |
, (12)

where sxy
i stands for the x, y coordinates of the configura-

tion si. The ground speed vG vector can be expressed by the
airspeed v and wind w as vG = v +w.

Following Eq. 9, the maximum ground speed occurs at
the system’s maximum speed, i.e., |v| = vmax. The angle
between vG and w can be written as cos∠(vG,w) = d·w

|w| .
Subsequently, the ground speed can be expressed using the
cosine rule as

|vG| = d ·w +
√

(d ·w)2 + v2max − |w|2. (13)

Finally, the second lower bound LB2 is defined as

LB2(s1, s2) =
L(s1, s2, ρLB)

|vG|
. (14)

Fig. 6 shows the average ratio between each lower bounds
and the true cost as a function of the wind force. For both
lower bounds, their estimation of the true cost becomes
looser as the wind force increases. Notice that LB2 is more
informative than LB1 because accounting for the direction
enables reducing the upper bound on the ground speed. In
addition, notice that both lower bounds reduce to the system’s
minimum-speed Dubins path divided by the maximum speed
in static environmental conditions. Thus, we used LB2 as lower
bound for dynamic environmental conditions.
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