
T*ε—Bounded-Suboptimal

Efficient Motion-Planning for

Minimum-Time Planar

Curvature-Constrained Systems

Research Thesis

Submitted in Partial Fulfillment of The

Requirements for the Degree of Master of Science

in Autonomous Systems and Robotics

Doron Pinsky

Submitted to the Senate of

the Technion - Israel Institute of Technology

Adar aleph, 5782 Haifa February 2022

Acknowledgments

This Research thesis was done under the supervision of Professor Oren Salzman

from the Computer Science Department.

The generous financial help of the Technion is gratefully acknowledged.

The results in this thesis have been accepted for publication by the author and

research collaborators in proceedings of conference and journal detailed below, cur-

rently under review.

• Doron Pinsky, Petr Váňa, Jan Faigl, Oren Salzman. T*ε—Bounded-Suboptimal

Efficient Motion-Planning for Minimum-Time Planar Curvature-Constrained

Systems, IEEE Robotics and Automation Letters (RA-L), 2022.

• Doron Pinsky, Petr Váňa, Jan Faigl, Oren Salzman. T*ε—Bounded-Suboptimal

Efficient Motion-Planning for Minimum-Time Planar Curvature-Constrained

Systems, IEEE Conference on Robotics and Automation (ICRA), 2022.

Contents

1 Introduction 4

2 Related Work 7

3 Problem Statement 9

4 T*ε 11
4.1 Algorithmic Background . 11

4.1.1 A*ε (A-star epsilon) . 11
4.1.2 T* (T-star) . 12

4.2 Algorithmic framework—T*ε . 13
4.2.1 Preliminaries . 13
4.2.2 Algorithmic Description . 14

5 Simulations and Results 17
5.1 Evaluating the Efficacy of S1 . 17
5.2 Computing Lower Bounds—Balancing Computation Time with In-

formative Lower Bounds . 18
5.3 Motion Planning in Static Environmental Conditions 19
5.4 Motion Planning in Dynamic Environmental Conditions 20
5.5 Discussion—Alternative Approaches 22

6 Conclusion and Future Work 23

7 Appendix 25
7.1 Updated Model . 25
7.2 Updated Lower Bounds . 26

Bibliography 28

List of Figures

1.1 (a), (b) The time-optimal and bounded-suboptimal path obtained
by T* [1] and by T*ε using an approximation factor of ε = 2, re-
spectively. The red and green segments correspond to settings where
the system travels at the minimum and maximum speed, respectively.
The colored arrows show the orientation of each configuration in the
solution. T*ε finds a solution whose cost is 7 % larger than the cost
of the optimal solution found by T*, but the runtime of T*ε is faster
by a factor of roughly 13×. (c) Given a start orientation (diagonal on
the left or horizontal on the right) in an eight-connected grid, there
are 68 unique transitions in total (after taking into account symme-
try and rotation) to the adjacent grid cells. The speedup of T*ε is
obtained by computing only a small subset of the time-optimal tran-
sitions that are all computed by T*. Here, T*ε computes only five
transitions, four of which are used in the found path. 5

2.1 34 candidates for time-optimal paths between two configurations for
variable-speed system with unbounded acceleration [1]. 8

4.1 The unique transitions in an eight-connected grid with eight optional
heading angles after taking into account rotation and symmetry. . . 13

4.2 (a) The time-optimal solution obtained by T* and (b) the shortest
path obtained by computing a Dubins path with minimum speed on
the same setting. Notice that both paths, which are in the same
homotopy class, share many transitions. (c) The number of tran-
sitions in the solution γT* obtained by T* that also appear in the
solution obtained by Dubins path of minimum speed as a function of
the number of states in γT*. The average of those mutual transitions
in this evaluation of more than 550 experiments was almost 89%. (d)
The transitions in the solution obtained by T* and by Dubins with
minimum speed, respectively. Notice that in this example, all the
transitions that appeared in the solution obtained by computing a
Dubins path with minimum speed Dubins with minimum speed path
are also used in the path found by T*. 14

5.1 Average number of calls to c(·) by T*ε as a function of ε with (blue)
or without (purple) the step S1, respectively. Recall that there are
at most 68 possible transitions. 18

5.2 Comparing the effect of different approaches for lower bounds (ĉ(·)
in Eq. 4.2) for several values of the approximation factor ε. (a) Av-
erage number of calls to c(·) and (b) Average running time of T*ε,
respectively. 19

5.3 Comparison of T* and T*ε in static environmental conditions over 100
randomly chosen start and goal configurations. (a) Solution found
by T* and by T*ε with ε = 3 for one representative experiment.
The beginning of the solution found by both algorithms is identical,
while the end differs and is highlighted on the right-hand side. (b)
Average solution cost of T*ε compared to T* as a function of ε. (c)
Breakdown of the running time of T* and T*ε for different values
of ε. (d) Speedup in running time of T*ε over T* obtained with and
without pre-computing all time-optimal transitions. 20

5.4 Comparing T* and T*ε in dynamic environmental conditions where
the magnitude and direction of wind currents (blue arrows) are given
at the query time. (a) A representative solution obtained on one
randomly-generated map with randomly-generated start and goal con-
figurations, wind conditions, and minimum velocity vmin. (b) Running
time breakdown of T* and T*ε for the selected values of ε. (c) Av-
erage solution cost compared to the cost of the optimal solution and
speedup in running time as a function of ε. 21

6.1 Anytime-T*ε in dynamic environmental conditions with wind w =
0.2x̂ + 0ŷ. Solution cost compared to T* (blue) and approximation
factors values (orange) as a function of the computational time. . . 24

7.1 Average ratio between each lower bound and the time-optimal cost
as a function of the wind’s modulus (solid lines). Colored regions
represent a 60% non-parametric confidence interval of the true value. 25

Abstract

We considered the problem of computing collision-free paths for planar curvature-

constrained robotic systems in the presence of obstacles while minimizing execution

time. Specifically, we focus on the setting where a planar system can travel at

some range of speeds but with unbounded acceleration that can be used to model

many systems. Unfortunately, planning for such systems typically requires evalu-

ating many local time-optimal transitions connecting two configurations, which are

computationally expensive. In contrast to single-speed systems, when the system

can travel in a continuous range of velocities, the transitions between two config-

urations can not be computed analytically and have to be evaluated by numerical

optimization. These optimizations are computationally expensive, and in search-

based motion-planning algorithms, the transition’s evaluation lasts two orders of

magnitude more than any other algorithmic component. Existing methods either

precompute all such transitions in a preprocessing stage or use heuristics to speed

up the search without computing all those transitions, thus foregoing any guar-

antees on the solution quality. One may want to compute these transitions in a

preprocessing stage where time is not a constraint. However in many cases this

cannot be done since (i) there is no finite number of possible transitions, e.g., in a

continuous space or (ii) the parameters necessary to compute the system’s transi-

tions arrive with the query, e.g., when there are dynamic environmental conditions,

such as wind or ocean currents. Our key insight is that computing all the time-

optimal transitions is both (i) computationally expensive and (ii) unnecessary for

many problem instances. This work aims to use those insights to efficiently compute

high-quality bounded-suboptimal paths. We presented an algorithmic framework,

which we call T*ε, that finds a near-optimal solution by minimizing the expensive-

to-compute numerical evaluations of time-optimal transitions and consequentiality

the algorithm’s overall runtime. It also uses a heuristic approach for computing an

initial set of transitions to reduce the total number of local time-optimal transitions.

We show that by computing bounded-suboptimal solutions (solutions whose cost is

bounded by 1 + ε times the cost of the optimal solution for any user-provided ε)

and not time-optimal solutions, one can dramatically reduce the number of time-

1

optimal transitions. We demonstrate using empirical evaluation that our planning

framework can reduce the runtime by several orders of magnitude compared to the

state-of-the-art while still providing guarantees on the quality of the solution, es-

pecially in dynamic environmental conditions when precomputing all time-optimal

transitions in a preprocessing stage can not take place.

2

List of Notations

ε Approximation factor
v[m

s
] Velocity

u[rad
s

] Turning rate
K[m

s2
] Lateral acceleration

vmax[m
s

] Maximum velocity
vmin[m

s
] Minimum velocity

ρmax[m] Maximum turning radius
ρmin[m] Minimum turning radius
γ[m] A path
c(γ)[s] Cost of a path γ
sstart Initial state
sgoal Goal state
n Graph node
g(n) Cost from source node to n
h(n) Estimation for cost from n to goal node
T Set of possible transitions
c(·) Function for evaluating the true cost of a transition
ĉ(·) Function for evaluating a lower bound for the true cost of a transition
κ(·) Indicator function

γvmin
SP [m] Shortest path

w Wind vector
ρLB[m] Lower bound turning radius
L[m] Length of a path
vG[m

s
] Ground speed

d Direction vector
v[m

s
] Aerial speed

3

1 Introduction

In this work, we study the problem of computing minimal-time collision-free paths

for curvature-constrained systems with variable speed. Curvature constrains are

prevalent in a variety of systems (see, e.g. [2], [3], [4], [5]). Unfortunately, deter-

mining whether a collision-free curvature-constrained path exists is NP-hard even

for a planar system [6]. As a result, this continuous problem is typically discretized

into a graph data structure using sampling-based [7] or search-based approaches [8],

which is then queried to obtain a discrete path representing a curvature-constrained

solution in the continuous space. The graph’s vertices correspond to robot config-

urations (i.e., d-dimensional points that uniquely describe the robot’s position and

orientation) and edges correspond to local motions taken by the robot.

Interestingly, the computational bottleneck in these search algorithms is a fre-

quent computation of local time-optimal robot’s transitions between neighboring

vertices, obtained using numerical optimization. Our key insight, depicted in Fig. 1.1,

is that computing all the time-optimal transitions is both (i) computationally ex-

pensive and (ii) unnecessary for many problem instances. It is worth noting that

in certain situations, these computations can be done in an offline phase. In such

settings, the importance of minimizing the computation of time-optimal transitions

is negligible. However, as will be shown in Sec. 2 and 5 there are conditions where

those computations can not be done in advance. We introduce a novel algorithmic

framework called T*ε that allows computing bounded-suboptimal solutions while

reducing planning times by orders of magnitude compared to the state-of-the-art.

Our framework consists of three algorithmic components. The first component

assumes that we have an efficient-to-compute lower bound on the cost of the optimal

transition between two configurations. In Sec. 5, we demonstrate two such bounds—

when the environment does not and does contain the environment drift such as wind

currents. Our second algorithmic component is the A*ε-based search algorithm [9]

that uses these optimal transition lower bounds, together with a user-provided ap-

proximation factor ε, to choose which edges to consider. Roughly speaking, the

search attempts to use only transitions for which the true (computationally ex-

pensive) cost was computed while guaranteeing the quality bound on the obtained

4

0 2 4 6 8 10
0

2

4

6

8

10

Start Goal

(a)
0 2 4 6 8 10

0

2

4

6

8

10

Start
Goal

(b)

(c)

Figure 1.1: (a), (b) The time-optimal and bounded-suboptimal path obtained
by T* [1] and by T*ε using an approximation factor of ε = 2, respectively. The
red and green segments correspond to settings where the system travels at the min-
imum and maximum speed, respectively. The colored arrows show the orientation
of each configuration in the solution. T*ε finds a solution whose cost is 7 % larger
than the cost of the optimal solution found by T*, but the runtime of T*ε is faster
by a factor of roughly 13×. (c) Given a start orientation (diagonal on the left or
horizontal on the right) in an eight-connected grid, there are 68 unique transitions
in total (after taking into account symmetry and rotation) to the adjacent grid
cells. The speedup of T*ε is obtained by computing only a small subset of the
time-optimal transitions that are all computed by T*. Here, T*ε computes only five
transitions, four of which are used in the found path.

solution. Finally, the third algorithmic component is a heuristic approach to pre-

compute a small set of transitions that are likely to be used in an optimal path. The

goal of those three components is to guide the algorithmic framework to compute

as few as possible expensive-to-compute time-optimal transitions.

Using efficient-to-compute lower bounds on the cost of local transitions is a com-

mon technique to speed up motion-planning algorithms (see, e.g., [10], [11], [12],

5

[13]). These are used to minimize the computation time taken to compute the cost

of an edge or transition, also known as an edge evaluation. Typically, the edge eval-

uation corresponds to computing if a robot intersects an obstacle while performing

some local motion (also known as collision detection [14]). Thus, the computa-

tionally expensive operation of edge evaluation is applied to each edge individually.

Indeed, it can be shown that under some mild assumptions, these approaches allow

minimizing the number of edges evaluated [15].

In our case, where we plan in a discretized space, i.e, the continuous search space

is discretized into a lattice-based space, and there is a fixed set of transitions that can

be taken from any given configuration. Since these transitions are computationally

expensive to compute, it is natural to try and re-use transitions that have already

been computed. The challenge is how this should be done while ensuring that the

cost of the path computed is within a given multiplicative bound to the cost of an

optimal path.

As we demonstrate in simulation (Sec. 5), our planning framework allows com-

puting only a small fraction of transitions, which, in turn, allows us to reduce the

runtime by several orders of magnitude compared to the state-of-the-art, especially

in dynamic conditions.

The remainder of this thesis is organized as follows. A review of relevant work

in the field of motion-planning for minimum-time curvature-constrained systems is

presented in Sec. 2. The description and the formulation of the problem is introduced

in Sec. 3. The T*ε framework is presented in Sec. 4. Empirical evaluation (in

simulation) of the algorithm is presented in Sec. 5, and a conclusion and discussion

about future work is outlined in Sec. 6

6

2 Related Work

Let continue with the review of related work on planning for minimum-time curvature-

constrained systems. When the system is constrained to travel at a single speed, an

optimal path connecting two configurations (i.e., two planar locations, each associ-

ated with its angular heading) can be computed analytically [16]. In this setting,

an optimal path, also known as Dubins path, is one of six types: RSR, RSL, LSR,

LSL, RLR, LRL, where R and L refer to right and left turns, respectively, and S

refers to going straight. As the system travels at a single speed, the shortest and

the time-optimal paths are identical.

The kinematic model considered in this work is the setting where the system can

travel at some range of speeds but with unbounded acceleration (i.e., transitioning

between low and high-speed can be done instantaneously). It is not hard to see that,

in such a setting, the shortest path is attained by computing the optimal Dubins

path, assuming that the system travels at the minimum speed (as the system can

travel using the smallest turning radius possible and can thus better maneuver).

However, when the robotic-system can change its velocity, the shortest path is not

necessary the optimal. Computing the time-optimal path is more demanding and

requires alternating between low-speed (to allow for tighter turns) and high-speed

motions (to allow for faster progress).

Wolek et al. [17] showed that it is sufficient to consider only the two extreme

speeds and identified a sufficient set of 34 candidate paths (in contrast to the six-

candidate paths when the system travels at a single speed). Each candidate path

contains up to five segments, compared to three in Dubins path. These can be

turning right or left in maximum (bang arc) or minimum (cornering arc) speed

and going forward in maximum speed. All the candidates for the time-optimal

path can be seen in Fig. 2.1. However, in contrast to Dubins paths, which can

be computed analytically, computing these time-optimal paths for a variable-speed

system requires a numerical optimization that is (i) much more computationally

expensive and (ii) may return locally optimal solutions (and not globally-optimal).

Kučerová et al. [18] showed an efficient heuristic approach to find high-quality paths

when considering time as the cost function by using multiple turning radii. However,

7

Figure 2.1: 34 candidates for time-optimal paths between two configurations for
variable-speed system with unbounded acceleration [1].

there is no guarantee regarding the quality of these paths.

For each of the aforementioned models, motion-planning algorithms that account

for environmental obstacles were introduced. These include both sampling-based ap-

proaches such as the work by Wilson et al. [19], search-based methods such as the

work by Song et al. [1], and hybrid methods that borrow ideas from both motion-

planning disciplines [20]. Of specific interest to the presented work is T* [1], a time-

optimal risk-aware motion-planning algorithm that obtains a time-optimal solution

in a discrete grid-based search space. However, it requires a time-consuming pre-

processing phase where all the time-optimal transitions are computed. As our work

builds upon the algorithmic foundation of T*, we describe it in Sec. 4.1. Following

the exposition of T*, Wilson et al. [21] developed a fast, collision-free motion-finding

algorithm that uses Dubins paths of various speeds to reduce the computational ef-

fort and runtime of T*. For the settings evaluated, the costs of solutions obtained

by this algorithm are near-optimal, but there are no guarantees on the quality of

solutions.

The aforementioned kinematic model can be extended to account for external

dynamic changes such as wind or ocean currents that can be considered environment

drift. For such systems with single speed, a minimum-time path can be computed

similarly to the setting where no wind exists [22]. However, only two of the Dubins

candidate path types have analytic solutions (RSR and LSL).

These kinematic models were used not only in the context of single-goal motion

planning problems but also in the settings where the objective is to reach multiple

goals [23] and further extended for some notion of rewards [24].

8

3 Problem Statement

Our problem formulation follows Song et al. [1]. Specifically, we assume a variable-

speed curvature-constrained planar robotic system with unbounded acceleration.

The system’s dynamics is described by
ẋ(t)

ẏ(t)

θ̇(t)

 =

v(t) cos θ(t)

v(t) sin θ(t)

u(t)

 . (3.1)

Here, (x, y, θ) ∈ SE(2) is the robot’s placement and orientation, v is the robot’s

speed (which is considered as a control input) and u is the second control input

dictating the system’s turning rate via maximal lateral acceleration K that is de-

termined for the specific system1 as

|u| ≤ K

v
. (3.2)

The speed is limited by minimum and maximum value (w.l.o.g., we assume that vmax =

1):

0 < vmin ≤ v ≤ vmax = 1. (3.3)

Thus, the system is constrained to travel between two extreme radii:

ρmax =
v2

max

K
, ρmin =

v2
min

K
. (3.4)

We assume that the continuous workspace is discretized to a grid according to a

predefined resolution. Each cell can be categorized as free or forbidden corresponding

to locations that the system can and cannot occupy, respectively. In addition, we

assume that every robot motion starts and ends at the center of a cell. Specifically,

at each step, the robot transitions to one of its eight neighbors and with one of eight

possible orientations.

A path γ is a sequence of configurations where the transition between them obeys

1For example, K = g tanϕmax for fixed-wing vehicles where g is the gravitational acceleration
and ϕmax the maximum allowed bang angle.

9

the system’s dynamics and constraints (Eq. 3.1–3.3). It is said to be collision free

if it only occupies free cells. The cost c(γ) of a path γ is the step-wise cost of the

transitions between any consecutive configurations in γ. It can be computed using

the system velocity along γ. Namely,

c(γ) =

∫
γ

1

v(τ)
dτ, (3.5)

where v(τ) refers to the speed along the path segment dτ .

Given start and goal configurations sstart, sgoal ∈ SE(2), a path γ is said to

be optimal if it (i) starts at sstart and ends at sgoal; and (ii) there is no path γ′

connecting sstart and sgoal such that c(γ′) < c(γ). Similarly, it is said to be bounded-

suboptimal for some approximation factor ε ≥ 0 if it (i) starts at sstart and ends

at sgoal; and (ii) for any path γ′ connecting sstart and sgoal, c(γ) ≤ (1 + ε) · c(γ′).
While previous works (see, e.g., [1]) were concerned with finding optimal paths,

in this work, we are interested in computing bounded-suboptimal paths for a user-

provided approximation factor ε. As shown, the extra flexibility obtained by com-

puting bounded-suboptimal paths allows us to reduce computation times by orders

of magnitude with a little compromise on path quality together with a theoretic

guarantee on the suboptimality bound.

10

4 T*ε

4.1 Algorithmic Background

As both A*ε [9] and T* [1] serve as the algorithmic foundation of our work, we

provide a brief description of these two algorithms.

4.1.1 A*ε (A-star epsilon)

A*ε (also known as Focal search) [9] is a bounded-suboptimal search algorithm

based on the celebrated A* algorithm [25]. Like A*, it searches in a graph by

continuously expanding nodes, starting from the start node until the goal node is

reached. To ensure optimality, A* orders nodes in a priority list called Open. Nodes

in the Open list are ordered according to their f -value that is the sum of the cost

to reach the node from the source (also known as the cost-to-come or g-value and

denoted by g(n) for a node n) added to a conservative estimate of the cost to reach

the goal (also known as the cost-to-go or h-value and denoted by h(n) for a node n).

Namely for a node n, its f -value is

f(n) = g(n) + h(n). (4.1)

When h(n) is admissible, i.e, estimated cost-to-go is less-than or equal to the real

cost-to-go, A* finds an optimal solution.

Unlike A*, A*ε also uses a so-called Focal list containing all nodes from the Open

list whose f -values are no larger than 1 + ε times the smallest f -value in the Open

list. Theorem 1. in [9], shows that any sequence of nodes from the Focal list

ensures that the cost of the final solution will indeed be bounded by a factor of 1+ε

when compared to the cost of the optimal solution, is brought here. For the reader’s

convenience, we now repeat the original statement and proof.

Theorem 1. A*ε is ε-admissible, i.e., it always finds a solution whose cost does not

exceed the optimal cost by more than a factor 1 + ε.

Proof:

11

Let ĥ be an admissible heuristic, n0 the node with lowest f̂ in Open, t is a termi-

nation node (chosen for expansion and found goal), n1 the first node on an optimal

path which resides in Open, C0 the cost of an optimal path, and C(t) is the solution

cost of the connecting path from the source to node t, i.e, C(t) , f̂(t) = ĝ(t).

Since ĥ is admissible, f̂(n1) ≤ C0. Now, by the fact that Open is ordered accord-

ing to the f̂ -values, we have that f̂(n0) ≤ f̂(n1), and since t is chosen from Fo-

cal, f̂(t) ≤ f̂(n0)(1 + ε). Therefore, C(t) = f̂(t) ≤ f̂(n1)(1 + ε) ≤ C0(1 + ε).

4.1.2 T* (T-star)

T* [1] builds on the approach by Wolek et al. [17] that allows computing an approx-

imate1 solution for the time-optimal transition between any two configurations in

an obstacle-free space. These transitions are used to compute all possible motions

for an agent in a discretized eight-connected grid. In this space, there is a finite set

of possible transition types. For example, a transition can be moving from configu-

ration (0, 0, 0) to configuration (1, 1, π/2), which corresponds to moving diagonally

in the NE direction while changing the system’s heading.

To this end, there are a total of 8×8×8 = 512 possible transitions (eight possible

start and target orientations and eight neighboring cells). However, after accounting

for symmetry and rotation, there are only 68 unique transitions, Fig. 4.1 shows the

all possible transitions in our setup.

After pre-computing all possible transitions, an A*-like search is used to find a

minimal-cost path. In their original work, Song et al. [1] consider both minimal-

time paths and a cost-function that balances time and the risk of colliding with an

obstacle. However, we consider only minimum-time paths in this work and refer

to T* as the search algorithm that optimizes this criterion.

It is important to note that it is not possible to pre-compute all transitions in

an offline phase in many settings. It is because optimization-related parameters

might be available only when a query is provided. For example, in the presence

of wind conditions, which affect the system’s dynamics and hence the transitions’

computation, wind parameters are only available to the planner when a query is

provided. For further details, the reader is referred to Sec. 5.

Interestingly, after extensive empirical evaluation, we noticed that: (i) pre-

computing all possible transitions last two orders of magnitude more than the A*-like

search; (ii) only a small fraction of all possible time-optimal transitions makes up

1The solutions computed are only an approximation of the time-optimal solutions since the
computation is based on numerical optimizations, which may not converge to a global optimum.
Thus, the optimality of T* and the bounded-suboptimality of T*ε is only with respect to (w.r.t.)
the quality of the local-optimization.

12

Figure 4.1: The unique transitions in an eight-connected grid with eight optional
heading angles after taking into account rotation and symmetry.

an optimal path found by T*; and (iii) Dubins path computed using the minimal

speed vmin (whose cost is a lower bound on the length of the time-optimal path)

is often in the same homotopy class as the optimal path and shares a significant

portion of its transitions. Fig. 4.2 shows demonstrations of (iii), notice that paths of

both Dubins at minimum speed and T* usually share a large portion of their transi-

tions. These observations are key to our algorithmic framework, which is described

in the following section.

4.2 Algorithmic framework—T*ε

4.2.1 Preliminaries

Let T denotes a set of possible transitions. By a slight abuse of notation, we

assume that we have access to two functions c : T → R and ĉ : T → R. The

first, which is expensive-to-compute, corresponds to evaluating the true cost of the

transition according to Eq. 3.5. The second, which is fast-to-compute, corresponds

to evaluating a lower bound on the transition cost. Namely, ∀T ∈ T , ĉ(T) ≤ c(T).

Once the cost of a transition T is evaluated using c(·), the value is stored in a cache-

like data structure for later use. Thus, there is no need to compute it again when

evaluating the same transition later.

To this end, let κ : T → {0, 1} be an indicator function corresponding to the cases

where the cost of a transition T (i) has not been evaluated using c(·) (i.e., κ(T) = 1)

or (ii) has been evaluated using c(·) (i.e., κ(T) = 0). We start our algorithm with

the setting that ∀T ∈ T , κ(T) = 1.2

13

(a) (b) (c)

(d)

Figure 4.2: (a) The time-optimal solution obtained by T* and (b) the shortest path
obtained by computing a Dubins path with minimum speed on the same setting.
Notice that both paths, which are in the same homotopy class, share many transi-
tions. (c) The number of transitions in the solution γT* obtained by T* that also
appear in the solution obtained by Dubins path of minimum speed as a function of
the number of states in γT*. The average of those mutual transitions in this eval-
uation of more than 550 experiments was almost 89%. (d) The transitions in the
solution obtained by T* and by Dubins with minimum speed, respectively. Notice
that in this example, all the transitions that appeared in the solution obtained by
computing a Dubins path with minimum speed Dubins with minimum speed path
are also used in the path found by T*.

4.2.2 Algorithmic Description

Our algorithmic framework summarized in Alg. 1 consists of the following two main

steps.

S1: Heuristically computing the true cost for a small set of transitions.

S2: Finding a bounded-suboptimal solution while trying to minimize the number

of calls to c(·).

In the first step S1 (lines 1–3), we start by finding the shortest path γvmin
SP (line 1)

from sstart to sgoal that is Dubins path using the minimum speed vmin. For every

transition T ∈ γvmin
SP taken along this path, we compute its true cost c(T), cache it

and set κ(T) = 0 (lines 2–3).

2The reason we chose to define κ is that we start with κ(T) = 1 for all nodes and ordering
nodes lexicographically in the Focal list where lower means better.

14

Algorithm 1: T*ε

Input: map, sstart, sgoal, approximation factor ε
Output: bounded-suboptimal path connecting sstart to sgoal

S1. compute c(·) for transitions in shortest path

1 γvmin
SP ← minimal-length collision-free Dubins path on map connecting sstart

to sgoal using vmin

2 for each transition T ∈ γvmin
SP do

3 compute c(T), cache result and set κ(T) = 0

S2. A*ε-like search

4 run A*ε from nstart (node with state sstart) with Open and Focal ordered
according to Eq. 4.1 and 4.3, respectively

5 when expanding a node n do
6 if incoming transition n.T was not computed (κ(n.T) = 1) then
7 compute c(n.T), cache result, set κ(n.T) = 0
8 continue
9 if configuration associated with the node n is sgoal then

10 return path associated with n
11 for each succesor node n′ of n in map do
12 use Eq. 4.2 to evaluate the g-value of n′

In the second step S2 (lines 4–12), we run an A*ε-like search to find a bounded-

suboptimal path from sstart to sgoal given some approximation factor ε. We base

our search algorithm on A*ε because we can use it to heuristically guide the search

to expand nodes for which the incoming time-optimal transition has already been

computed.

Formally, each node n considered by the search is associated with the parent

node n.parent except for the start node nstart associated with sstart, which has no

parent. In addition, each node stores the time-optimal transition n.T used to get

from n.parent to n. When expanding a node n (namely, computing successor nodes

and inserting them into the OPEN list), the true cost c(n.T) of the time-optimal

transition leading to n is computed. However, the cost used to reach a successor

node n′ via transition n′.T is (i) ĉ(n′.T) if κ(n′.T) = 1 and (ii) c(n′.T) if κ(n′.T) =

0. Note that for some nodes in the Open list, the true cost of the time-optimal

transition associated with them may not have been computed. However, for all

expanded nodes, the true cost of the incoming time-optimal transition is computed

at some point.

To this end, if we set g(nstart) = 0 to be the cost-to-come (g-value) of the start

15

node, then the cost-to-come of any other node n in the Open list is

g(n) = g(n.parent) +

ĉ(n.T) if κ(n.T) = 1,

c(n.T) if κ(n.T) = 0.
(4.2)

The f -value of the node n (denoted by f(n) and used to prioritize nodes in the

Open list) is defined in Eq. 4.1. h(n) can be any admissible estimate of the cost

to reach the goal. In our setting, we use the length of the minimum speed Dubins

path divided by the vehicle’s maximum speed.

Recall (Sec. 4.1) that A*ε uses a Focal list that contains all nodes whose f -

value is at most 1 + ε the f -value of the minimal-cost node in the Open list. In our

setting, nodes in Focal are lexicographically sorted using the following key:

key(n) = (κ(n.T), f(n)). (4.3)

Thus, any node n for which κ(n.T) = 0 (i.e., the true cost c(n.T) of the transi-

tion leading to n has been computed) is always prioritized before any node n′ for

which κ(n′.T) = 1 (i.e., the true cost c(n′.T) of the transition leading to n′ has

not been computed), regardless of their respective f -values. Among all nodes with

identical values of κ, nodes with smaller f -values are prioritized. Once a node n

is chosen for expansion, the true cost of n.T is computed if it has not been com-

puted beforehand. Finally, a path is found once a node associated with the goal

configuration sgoal is removed from the Open list.

Following the theoretic properties of A*ε [9] which is reviewed in Theorem 1 and

using the fact that ∀T ĉ(T) ≤ c(T) we have the following Corollary.

Corollary 1. Let ε ≥ 0 and ĉ(·) be some function that bounds from below the true

cost c(·) of any time-optimal transition. T*ε, using ε, ĉ, and c is bounded-suboptimal

with an approximation factor of 1 + ε.

16

5 Simulations and Results

In this section, we report on empirical evaluation of our approach in a simulated

environment inspired by Song et al. [1]. We start (Sec. 5.1) by evaluating our

heuristic approach for computing the true cost for a small set of transitions (step S1).

Then we continue (Sec. 5.2) to demonstrate how the lower bound ĉ needs to be both

informative (i.e., as close as possible to the real cost c) and computationally cheap-to-

compute (as its main purpose is to save the computation time) by evaluating several

different lower bounds that balance these two traits. We then move to compare our

motion-planning approach with T* in static environmental conditions (Sec. 5.3),

i.e., when the system dynamics are known before the query is provided and are

independent of the specific location at which the robot resides, and in dynamic

environmental conditions such as when wind currents exist (Sec. 5.4). Finally, we

briefly discuss and qualitatively compare T*ε with alternative approaches to find

paths that attempt to minimize the execution time (Sec. 5.5).

All experiments were run on a 3.1 GHz Intel Core i9 processor with 32 GB of

memory. Benchmarks, system parameters, and C++ implementation of all the al-

gorithms used in our work are publicly available1. Throughout Sec. 5.1–5.3, we test

the performance of our algorithm across 100 randomly generated scenarios of 14×14

cells and using vmin = 0.5, where for a given scenario, each cell has a probability of

25 % of being blocked, and the start and goal configurations are chosen uniformly

at random while ensuring that a solution exists. When reporting algorithmic at-

tributes, e.g., solution cost or runtime, the values represent the average across the

100 scenarios. In some cases, we also report confidence intervals that include two

standard deviations from the mean. In Sec. 5.4, we provide additional information

on the experiment setup.

5.1 Evaluating the Efficacy of S1

To evaluate the efficacy of the step S1, wherein we provide a heuristic approach for

computing the true cost for a small set of transitions, we report the number of calls

1https://github.com/CRL-Technion/tstar-epsilon

17

https://github.com/CRL-Technion/tstar-epsilon

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Approximation factor ε

10

20

30

40

50

60

68

N
o
.
o
f

ca
ll
e
s

to
c
(·)

γvmin

SP

T*ε with S1

T*ε without S1

Figure 5.1: Average number of calls to c(·) by T*ε as a function of ε with (blue) or
without (purple) the step S1, respectively. Recall that there are at most 68 possible
transitions.

to c(·) by T*ε as a function of the approximation factor ε with and without this

initial step (Fig. 5.1).

Observe that for values of ε larger than 0.1, using S1 allows reducing the average

number of calls to c(·) by roughly 10%. Moreover, in this case, for large approxima-

tion factors, the average calls to c(·) converges to the number of transitions in γvmin
SP .

When the step S1 is not invoked, T*ε is not “bootstrapped” with a good set of

pre-computed time-optimal and thus evaluates unnecessary transitions.

5.2 Computing Lower Bounds—Balancing Computation Time

with Informative Lower Bounds

Recall that in Sec. 4.2, we assumed that we have access to ĉ—an efficient-to-compute

tight lower bound on c, the true cost of the time-optimal transition. However, there

is an inherent tradeoff between how informative a lower bound is (which immediately

corresponds to how accurately it can guide the search) and its computation time

(which can negate the effectiveness of the lower bound).

We evaluated T*ε using three different lower bounds that demonstrate this be-

havior: (i) Euclidean distance divided by vmax; (ii) length of minimum-speed Dubins

path divided by vmax; and (iii) length of minimum-speed Dubins path divided by vmax

while accounting for environment obstacles. Note that all lower bounds are divided

by vmax, thus always underestimating the true cost of a transition. In addition,

they are ordered from low to high according to their computation time and how

informative they are.

18

ε = 0.1 ε = 0.3 ε = 0.5 ε = 1 ε = 3
0

10

20

30

40

50

N
o
.
o
f

ca
ll

e
s

to
c
(·)

(a)
ε = 0.1 ε = 0.3 ε = 0.5 ε = 1 ε = 3

0

5

10

15

20

25

R
u

n
ti

m
e

[s
e
c

]

(b)

Euclidean distance Dubins paths without obstacles Dubins paths with obstacles

Figure 5.2: Comparing the effect of different approaches for lower bounds (ĉ(·) in
Eq. 4.2) for several values of the approximation factor ε. (a) Average number of
calls to c(·) and (b) Average running time of T*ε, respectively.

We compare (Fig. 5.2) the three lower bounds w.r.t. the number of time-optimal

transitions computed by T*ε and its running time. As expected, the Euclidean

distance is the least-informative lower bound, thus resulting in the maximal number

of time-optimal transitions computed for all values of ε. Moreover, even though it is

efficient-to-compute, it does a poor job in guiding the search, and thus the runtime

is high. Computing Dubins path while accounting for obstacles is more informative

but also more expensive-to-compute. It does result in the smallest number of calls

to c(·) but has longer running times when compared to using Dubins paths that

do not account for obstacles. The latter also has a comparable number of calls

to c(·). Thus, we use lower bound Dubins paths without obstacles in the rest of the

evaluation.

5.3 Motion Planning in Static Environmental Conditions

We compare T*ε with T* in static environmental conditions, i.e., where the system

dynamics are invariant to the robot’s placement and orientation in the scenario. As

we can see in Fig. 5.3c, computing time-optimal transitions dominate the running

time of all algorithms. If the system dynamics are known in advance, these can be

pre-computed in an offline step by T*, and it outperforms T*ε for all ε by a factor

of between 60× and 290×. However, if we account for this preprocessing time, T*ε

dramatically reduce the run time by a factor ranging between 8× and 15×. It is

worth noting that in either case, T*ε finds a solution with an average cost that is

19

(a)

0.
1

0.
3

0.
5

1.
0

3.
0

Approximation factor ε

1.000

1.025

1.050

1.075

1.100

1.125

S
o
lu

ti
o
n

co
st

co
m

p
a
re

d
to

T
*

(b)

T* ε = 0.1 ε = 0.3 ε = 0.5 ε = 1 ε = 3

a

10−1

100

101

T
im

e
[s

e
c

]

Step S1

Offline c(·)
Online c(·)
A*/A*ε-like search

(c)

0.
1

0.
3

0.
5

1.
0

3.
0

Approximation factor ε

0.005×

0.010×

0.015×

0.020×

S
p

e
e
d

u
p

w
it

h
p

re
p

ro
ce

ss
in

g

5×

8×

10×

12×

15×

18×

S
p

e
e
d

u
p

w
it

h
o
u

t
p

re
p

ro
ce

ss
in

g

(d)

Figure 5.3: Comparison of T* and T*ε in static environmental conditions over 100
randomly chosen start and goal configurations. (a) Solution found by T* and by T*ε
with ε = 3 for one representative experiment. The beginning of the solution found
by both algorithms is identical, while the end differs and is highlighted on the right-
hand side. (b) Average solution cost of T*ε compared to T* as a function of ε.
(c) Breakdown of the running time of T* and T*ε for different values of ε. (d)
Speedup in running time of T*ε over T* obtained with and without pre-computing
all time-optimal transitions.

much lower than the guaranteed suboptimality bound.

5.4 Motion Planning in Dynamic Environmental Conditions

In the previous section, we considered static environmental conditions and showed

that using an approximation factor allows reducing T*ε’s planning times dramati-

cally. However, if the system’s dynamics are known in advance, T* may perform all

its computationally-expensive operations in a preprocessing stage. In contrast, this

is not the case when the system’s dynamics are not known in advance. It can be

due to changes in the maximal speed that the system can take (due to, e.g., pay-

load changes of the system or regulatory changes happening just before a query is

received) or due to dynamic environmental conditions such as wind currents whose

magnitude and direction is known only when a query is received. We use the latter

case to demonstrate the efficacy of T*ε. In particular, we assume that the magnitude

of wind currents is uniform across a given scenario.

It is worth noting that this dynamic setting, analyzed by Techy and Woolsey [22],

can be seen as a generalization of the setting described in Sec. 3 and by Mittal et

20

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Start

Goal

(a)

T* ε = 0.1 ε = 0.3 ε = 0.5 ε = 1 ε = 3

a

10−1

100

101

102

T
im

e
[s

e
c

]

Step S1

Online c(·)
A*/A*ε-like search

(b)

0.
1

0.
3

0.
5

1.
0

3.
0

Approximation factor ε

1.0

1.1

1.2

1.3

1.4

S
o
lu

ti
o
n

co
st

co
m

p
a
re

d
to

T
*

10×

15×

20×

25×

30×

35×

40×

R
u

n
n

in
g

ti
m

e
sp

e
e
d

u
p

(c)

Figure 5.4: Comparing T* and T*ε in dynamic environmental conditions where
the magnitude and direction of wind currents (blue arrows) are given at the query
time. (a) A representative solution obtained on one randomly-generated map with
randomly-generated start and goal configurations, wind conditions, and minimum
velocity vmin. (b) Running time breakdown of T* and T*ε for the selected values
of ε. (c) Average solution cost compared to the cost of the optimal solution and
speedup in running time as a function of ε.

al. [26]. To account for this more involved dynamic setting, we first note that one

cannot use rotation and symmetry between transitions to reduce the total amount

of unique transitions. Thus, in this setting, the total number of time-optimal transi-

tions is 512. Moreover, this requires an adaptation of how time-optimal transitions

are computed (see Appendix for a description of the new model). This adaptation,

based on the code for computing time-optimal transitions [17], is publicly available2.

The second notable change is that computing lower bounds (namely, calling ĉ, re-

quires some care, and the modifications are detailed in Appendix.

For dynamic environmental conditions, we used the same randomly generated

scenarios as described earlier. For each such scenario, we generated 10 instances

with varying wind and minimum velocity values. In particular, we sampled wind

conditions from |w| ∈ [0.14, 0.41] and minimum velocity values vmin ∈ [0.4, 0.9]. In

total, we ran 1000 experiments and the averaged results appear in Fig. 5.4. The most

computationally demanding component in both T*ε and T* is still computing the

time-optimal transitions, which requires two orders of magnitude more time than

any other algorithmic component. However, we observe that the approximation

factor allows for a dramatic reduction of the running time with a little compromise

on the quality of the solution. For example, as it can be seen in Fig 5.4c, using ε = 1,

T*ε guarantees a solution whose cost is at most twice c(γ∗) the cost of the optimal

solution, but returns a path whose average cost is no more than 1.15 · c(γ∗). It is

done while obtaining a speedup in run time by an average factor of 28×. In general,

as depicted in Fig. 5.4c, increasing ε results in a dramatic running time improvement

2https://github.com/CRL-Technion/Variable-speed-Dubins-with-wind

21

https://github.com/CRL-Technion/Variable-speed-Dubins-with-wind

at the cost of slightly lower solution quality.

5.5 Discussion—Alternative Approaches

Wilson et al. [21] reduced computational effort by allowing the system to follow

Dubins paths but using several radii, and evaluated this approach when using three

different radii. This heuristic approach reduces runtime, produces near-optimal so-

lutions but with no guarantees regarding their quality. From our comparison of T*ε

and Wilson’s model in static environments, we found that running times are faster

by several orders of magnitude, but path costs are larger by an average of 18 %.

However, when evaluating their approach in windy conditions, the speedup in run-

ning time is comparable to T*ε (as local transitions cannot be computed analytically

and a computationally expensive root-finding problem needs to be solved [22]), and

the quality of paths remain higher (again, with no formal guarantees).

An alternative approach is to compare our work with the approach by Mittal

et al. [26] that specifically accounted for efficient computation of paths in dynamic

environments. However, the main objective of their approach is online motion-

planning under ocean currents, and no importance was given to the quality of paths.

When comparing T*ε with their approach on representative environments, the path

quality obtained by T*ε was higher (lower execution times) by a factor of more than

2.7×.

22

6 Conclusion and Future Work

In this work, we presented T*ε, a novel algorithmic framework for efficiently finding

bounded-suboptimal solutions for time-optimal motion-planning. This is done by

minimizing the number of computations of time-optimal transitions used by the

system. When one cannot pre-compute the time-optimal transitions in advance,

this reduces the planning times by orders of magnitude compared to the state-of-

the-art.

Future work includes adapting our work for efficient re-planing (e.g., when the

wind changes while the system is in motion or dramatic payload changes during

trajectory execution). Here, we plan to adapt LPA* [27] to account for minimizing

the number of transitions used.

Choosing the appropriate approximation factor in bounded-suboptimal algo-

rithms such as weighted A* [28] and T*ε is non-trivial and application dependant,

and we believe it is out of the scope of this work. Having said that, we wish to give

some guidelines and approaches from a practitioner’s point of view.

Without any additional information, a user should choose the largest approxi-

mation factor acceptable from an application point of view. For example, if we are

willing to accept paths whose cost is at most 10% longer than the optimal cost, we

choose an approximation factor of ε = 0.1. Clearly, this is over-conservative as in

practice (and as demonstrated empirically in our experiments), the path quality is

likely to be much closer to optimal. We can gain more computational benefits by

choosing a larger approximation factor.

An immediate next step to tackle the problem of choosing the approximation

factor ε is to turn the search algorithm into an anytime algorithm that starts with a

large approximation factor, computes an initial solution fast, and then progressively

decreases the approximation factor at the expense of longer running times.

Indeed, we implemented an anytime version of T*ε, which we call Anytime-

T*ε. Here, the first value of ε is defined as a very large number, e.g., ε = 1000,

and we assume that the algorithm is given an upper bound on its overall running

time. When Anytime-T*ε finds a solution and does not exceed the bound on the

computation time, the value of ε is reduced, and a new search begins with smaller ε,

23

and with the already-computed transitions (which allows re-using the computation

performed in the previous iterations). The new value of ε is determined using (i) the

cost of the best-found solution that minimizes execution time and (ii) the cost of

the best-found Dubins path with minimum speed. These serve as upper and lower

bound for the cost of an optimal path, respectively:

εnew =
c(γT*εold)

c(γvmin
SP)

. (6.1)

27
.6

70
.0

10
0.

0

13
0.

0

15
0.

0

Time [sec]

1.0

1.2

1.4

1.6

1.8

2.0

S
o
lu

ti
o
n

co
st

co
m

p
a
re

d
to

T
*

10−1

101

103

A
p

p
ro

x
im

a
ti

o
n

fa
ct

o
r
ε

Figure 6.1: Anytime-T*ε in dynamic environmental conditions with wind w = 0.2x̂+
0ŷ. Solution cost compared to T* (blue) and approximation factors values (orange)
as a function of the computational time.

We present in Fig. 6.1 preliminary results obtained by running Anytime-T*ε av-

eraged over 20 experiments. In the tested scenario, T*’s running time is dominated

by the computation of time-optimal transitions that last 400 seconds. As we found,

starting with an extremely large approximation factor allows Anytime-T*ε to ob-

tain an initial solution roughly 14× faster than T*. The cost of this initial solution

is only 1.6× the cost of the optimal solution. Furthermore, as Anytime-T*ε re-

uses computation from previous search episodes, it can obtain an optimal solution

roughly 2.25× faster than T*.

24

7 Appendix

To consider the setting where we need to account for wind currents, we detail the

updated dynamics model and present two approaches to compute lower bounds on

transitions cost-efficiently.

7.1 Updated Model

We assume that there is a constant wind w = (wx, wy) that changes the original

system dynamics (Eq. 3.1) to
ẋ(t)

ẏ(t)

θ̇(t)

 =

v(t) cos θ(t) + wx

v(t) sin θ(t) + wy

u(t)

 . (7.1)

Furthermore, we assume that regardless of the magnitude of the wind, the ve-

hicle will move forward. It is ensured by the additional assumption that the wind

Figure 7.1: Average ratio between each lower bound and the time-optimal cost as
a function of the wind’s modulus (solid lines). Colored regions represent a 60%
non-parametric confidence interval of the true value.

25

magnitude is smaller than the minimum speed of the system vmin, i.e.,

|w| < vmin. (7.2)

7.2 Updated Lower Bounds

The wind component may significantly influence the turning capabilities (in the

reference frame of the ground). The smallest turning radius is obtained when flying

directly against the wind. We denote it by ρLB, the lower bound radius, and have

that

ρLB =

(
1− |w|

vmin

)
ρmin. (7.3)

To this end, a lower bound on the true length of the path between two configura-

tions s1 and s2 can be determined based on the length L(s1, s2, ρLB) of Dubins path

with the lower bound radius ρLB. Now, if this value is divided by an upper bound on

the effective maximal speed veffective
max in the reference frame of the ground, it provides

a lower bound on the true cost (i.e., the travel time).

We suggest two lower bounds based on how veffective
max is determined. The first

approach assumes that veffective
max = vmax + |w|. Namely, the effective maximal speed

is the sum of the system’s maximum speed and the wind magnitude. Thus, the first

lower bound LB1 is defined as

LB1(s1, s2) =
L(s1, s2, ρLB)

vmax + |w| . (7.4)

The second lower bound LB2 considers the direction between the start and end

configurations (s1 and s2, respectively) by computing the ground speed vG in the

given direction d. The direction is determined based on s1 and s2 as

d =
sxy

2 − sxy
1

|sxy
2 − sxy

1 |
, (7.5)

where sxy
i stands for the x, y coordinates of the configuration si. The ground

speed vG vector can be expressed by the system’s aerial speed v and wind w as

vG = v + w. (7.6)

Following Eq. 7.2, the maximum ground speed occurs at the system’s maximum

26

speed, i.e., |v| = vmax. The angle between vG and w can be written as

cos∠(vG,w) =
d ·w
|w| . (7.7)

Subsequently, the ground speed can be expressed using the cosine rule as

|vG| = d ·w +
√

(d ·w)2 + v2
max − |w|2. (7.8)

Finally, the second lower bound LB2 is defined as

LB2(s1, s2) =
L(s1, s2, ρLB)

|vG|
. (7.9)

Fig. 7.1 shows the average ratio between each lower bounds and the true cost

as a function of the wind force. For both lower bounds, their estimation of the

true cost becomes looser as the wind force increases. Notice that LB2 is more

informative than LB1 because accounting for the direction enables reducing the

upper bound on the ground speed. In addition, notice that both lower bounds

reduce to the system’s minimum-speed Dubins path divided by the maximum speed

in static environmental conditions. Thus, we used LB2 as lower bound for dynamic

environmental conditions.

27

Bibliography

[1] J. Song, S. Gupta, and T. A. Wettergren, “T?: Time-optimal risk-aware motion

planning for curvature-constrained vehicles,” RA-L, vol. 4, no. 1, pp. 33–40,

2018.

[2] L. B. Kratchman, M. M. Rahman, J. R. Saunders, P. J. Swaney, and R. J.

Webster III, “Toward robotic needle steering in lung biopsy: a tendon-actuated

approach,” in Medical Imaging: Visualization, Image-Guided Procedures, and

Modeling, vol. 7964, 2011, p. 79641I.

[3] H. Xiang and L. Tian, “Development of a low-cost agricultural remote sensing

system based on an autonomous unmanned aerial vehicle (UAV),” Biosystems

Engineering, vol. 108, no. 2, pp. 174–190, 2011.

[4] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for autonomous

cars that leverage effects on human actions,” in RSS, vol. 2, 2016, pp. 1–9.

[5] B. Garau, M. Bonet, A. Alvarez, S. Ruiz, and A. Pascual, “Path planning for

autonomous underwater vehicles in realistic oceanic current fields: Application

to gliders in the western mediterranean sea,” J. Marit. Res., vol. 6, no. 2, pp.

5–22, 2009.

[6] P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides,

“Curvature-constrained shortest paths in a convex polygon,” SIAM J. Comput.,

vol. 31, no. 6, pp. 1814–1851, 2002.

[7] Z. Zeng, L. Lian, K. Sammut, F. He, Y. Tang, and A. Lammas, “A survey

on path planning for persistent autonomy of autonomous underwater vehicles,”

O.E., vol. 110, pp. 303–313, 2015.

[8] N. Wang, D. Zhang, L. Zhou, and Q. Liu, “Near optimal path planning for

vehicle with heading and curvature constraints,” in WCICA, 2010, pp. 4514–

4519.

28

[9] J. Pearl and J. H. Kim, “Studies in semi-admissible heuristics,” IEEE Trans.

Pattern Anal. Mach. Intell, no. 4, pp. 392–399, 1982.

[10] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in ICRA, vol. 1,

2000, pp. 521–528.

[11] K. Hauser, “Lazy collision checking in asymptotically-optimal motion plan-

ning,” in ICRA, 2015, pp. 2951–2957.

[12] C. Dellin and S. Srinivasa, “A unifying formalism for shortest path problems

with expensive edge evaluations via lazy best-first search over paths with edge

selectors,” in ICAPS, vol. 26, no. 1, 2016.

[13] A. Mandalika, S. Choudhury, O. Salzman, and S. Srinivasa, “Generalized lazy

search for robot motion planning: Interleaving search and edge evaluation via

event-based toggles,” in ICAPS, vol. 29, 2019, pp. 745–753.

[14] J. Ketchel and P. Larochelle, “Collision detection of cylindrical rigid bodies for

motion planning,” in ICRA, 2006, pp. 1530–1535.

[15] N. Haghtalab, S. Mackenzie, A. Procaccia, O. Salzman, and S. Srinivasa, “The

provable virtue of laziness in motion planning,” in ICAPS, vol. 28, no. 1, 2018.

[16] L. E. Dubins, “On curves of minimal length with a constraint on average cur-

vature, and with prescribed initial and terminal positions and tangents,” Am.

J. Math., vol. 79, no. 3, pp. 497–516, 1957.

[17] A. Wolek, E. M. Cliff, and C. A. Woolsey, “Time-optimal path planning for a

kinematic car with variable speed,” J. Guid. Control Dyn., vol. 39, no. 10, pp.

2374–2390, 2016.

[18] K. Kučerová, P. Váňa, and J. Faigl, “On finding time-efficient trajectories for

fixed-wing aircraft using dubins paths with multiple radii,” in Annual ACM

Symposium on Applied Computing, 2020, pp. 829–831.

[19] J. P. Wilson, Z. Shen, S. Gupta, and T. A. Wettergren, “T?-lite: A fast time-

risk optimal motion planning algorithm for multi-speed autonomous vehicles,”

in OCEANS MTS/IEEE, 2020, pp. 1–6.

[20] E. Plaku, “Robot motion planning with dynamics as hybrid search,” in AAAI,

2013.

29

[21] J. P. Wilson, K. Mittal, and S. Gupta, “Novel motion models for time-optimal

risk-aware motion planning for variable-speed AUVs,” in OCEANS MTS/IEEE,

2019, pp. 1–5.

[22] L. Techy and C. A. Woolsey, “Minimum-time path planning for unmanned

aerial vehicles in steady uniform winds,” J. Guid. Control Dyn., vol. 32, no. 6,

pp. 1736–1746, 2009.

[23] J. Faigl, P. Váňa, M. Saska, T. Báča, and V. Spurnỳ, “On solution of the dubins

touring problem,” in ECMR, 2017, pp. 1–6.

[24] R. Pěnička, J. Faigl, and M. Saska, “Physical orienteering problem for un-

manned aerial vehicle data collection planning in environments with obstacles,”

RA-L, vol. 4, no. 3, pp. 3005–3012, 2019.

[25] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” IEEE Trans. Syst. Man Cybern., vol. 4,

no. 2, pp. 100–107, 1968.

[26] K. Mittal, J. Song, S. Gupta, and T. A. Wettergren, “Rapid path planning for

dubins vehicles under environmental currents,” IEEE Robot. Autom. Mag., vol.

134, p. 103646, 2020.

[27] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artif. Intell.,

vol. 155, no. 1-2, pp. 93–146, 2004.

[28] R. Ebendt and R. Drechsler, “Weighted A* search–unifying view and applica-

tion,” Artif. Intell., vol. 173, no. 14, pp. 1310–1342, 2009.

30

	Introduction
	Related Work
	Problem Statement
	T*bold0mu mumu
	Algorithmic Background
	A* (A-star epsilon)
	T* (T-star)

	Algorithmic framework—T*bold0mu mumu
	Preliminaries
	Algorithmic Description

	Simulations and Results
	Evaluating the Efficacy of S1
	Computing Lower Bounds—Balancing Computation Time with Informative Lower Bounds
	Motion Planning in Static Environmental Conditions
	Motion Planning in Dynamic Environmental Conditions
	Discussion—Alternative Approaches

	Conclusion and Future Work
	Appendix
	Updated Model
	Updated Lower Bounds

	Bibliography

